TENG Xueqing, KANG Yili, ZHANG Zhen, YOU Lijun, YANG Yuzeng, LIN Chong. Evaluation of Drilling and Completion Damage in Deep Medium-to-High Permeability Sandstone Reservoir in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37-43. DOI: 10.11911/syztjs.2018007
Citation: TENG Xueqing, KANG Yili, ZHANG Zhen, YOU Lijun, YANG Yuzeng, LIN Chong. Evaluation of Drilling and Completion Damage in Deep Medium-to-High Permeability Sandstone Reservoir in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37-43. DOI: 10.11911/syztjs.2018007

Evaluation of Drilling and Completion Damage in Deep Medium-to-High Permeability Sandstone Reservoir in Tarim Basin

More Information
  • Received Date: June 12, 2017
  • Revised Date: January 09, 2018
  • Targeting the serious reservoir damage during drilling completion processes of deep medium porosity,medium-high permeability sandstone reservoirs in Block A of Tarim Basin,potential reservoir damage factors were analyzed based on the reservoir’s geological characteristics.By virtue of damage evaluation testsin the lab and numerical simulation of the drilling fluid invasion depth,the degree of reservoir damage was evaluated,the reservoir damage mechanism was analyzed,and the reservoir damage control principles were discussed.The results are as follows:the damage rate of reservoir fluid sensitivity overall was weak,11%-34% on average.The damage by the drilling fluid was serious,where the permeability recovery rate of rock samples with drilling fluid dynamic damage was 35%-70%,the damage rate of rock samples with drilling fluid static damage was 28%-47%.The invasion depth of drilling fluid filtrating into the reservoir could be up to tens of meters during a drilling cycle.The study results showed that drilling fluid with smallparticle size solids combined with the degradation of abrasive particle size of the shield temporary plugging material under deep layer/high temperature would lead to insufficient shield temporary plugging capacity and insufficient pressure bearing capacity of the filter cake.Under these circumstances,solid phase plugging and incompatibility between drilling fluid and formation fluid would occur,which might further damage the deep medium-high permeability sandstone reservoirs in Block A.The research results could provide references for formulating the control principles and supporting technical measures of deep medium porosity,medium-high permeability sandstone reservoirs.
  • [1]
    唐玉响,沈建文,王佩平,等.强水敏高孔高渗储层水平井储层保护钻井液技术[J].石油钻探技术,2009,37(4):46-49. TANG Yuxiang,SHEN Jianwen,WANG Peiping,et al.Formation protection drilling fluids suitable for reservoir with high porosity,high permeability and high water sensitivity[J].Petroleum Drilling Techniques,2009,37(4):46-49.
    [2]
    张麒麟,魏军,王学英,等.中高渗油气藏安全钻井及保护油气层钻井液技术[J].钻井液与完井液,2008,25(1):6-8. ZHANG Qilin,WEI Jun,WANG Xueying,et al.Drilling fluid technology for safe drilling and reservoir protection in medium to high permeability reservoirs[J].Drilling Fluid Completion Fluid,2008,25(1):6-8.
    [3]
    王建华,鄢捷年,郑曼,等.理想充填暂堵钻井液室内研究[J].石油勘探与开发,2008,35(2):230-233. WANG Jianhua,YAN Jienian,ZHENG Man,et al.Laboratory study of ideal packing approach applying to high permeability sandstones[J].Petroleum Exploration and Development,2008,35(2):230-233.
    [4]
    白相双,邓宏,郭娟娟,等.吉林油田浅层高孔高渗油藏保护技术[J].钻井液与完井液,2012,29(3):85-87. BAI Xiangshuang,DENG Hong,GUO Juanjuan,et al.Reservoir protection technology on high-porosity and high-permeability shallow reserves in Jilin Oilfield[J].Drilling Fluid Completion Fluid,2012,29(3):85-87.
    [5]
    赵峰,唐洪明,孟英峰,等.保护高孔高渗储层的钻井完井液体系[J].钻井液与完井液,2008,25(1):9-11. ZHAO Feng,TANG Hongming,MENG Yingfeng,et al.Researches on drilling and completion fluids protecting high porosity and high permeability reservoirs[J].Drilling Fluid Completion Fluid,2008,25(1):9-11.
    [6]
    YOU Lijun,KANG Yili,NIU Xiao,et al.New approach for formation damage control of horizontal drilling in high permeability sandstone reservoirs[R].SPE 165132,2013.
    [7]
    康毅力,刘燕英,游利军,等.高渗砂岩油藏水平井储层保护钻井完井液[J].西南石油大学学报(自然科学版),2014,36(2):178-184. KANG Yili,LIU Yanying,YOU Lijun,et al.Drillng and completion fluids for high permeability sandstone reservoir protection in horizontal well[J].Journal of Southwest Petroleum University(Science Technology Edition),2014,36(2):178-184.
    [8]
    ALJABBAR M I,RIZKIAPUTRA R.Severe formation damage due to solids invasion in inclined/horizontal wells with high-permeability zones[R].OTC 26617,2016.
    [9]
    WINDARTO,GUNAWAN A Y,SUKARNO P,et al.Modelling of formation damage due to mud filtrate invasion in a radial flow system[J].Journal of Petroleum Science Engineering,2012,100:99-105.
    [10]
    ABRAMS A.Mud design to minimize rock impairment due to particle invasion[J].Journal of Petroleum Technology,1977,29(5):586-592.
    [11]
    罗向东,罗平亚.屏蔽式暂堵技术在储层保护中的应用研究[J].钻井液与完井液,1992,9(2):19-27. LUO Xiangdong,LUO Pingya.Application research of shielding temporary plugging technology in formation damage control[J].Drilling Fluid Completion Fluid,1992,9(2):19-27.
    [12]
    HANDS N,KOWBEL K,MAIKRANZ S,et al.Drill-in fluid reduces formation damage,increases production rates[J].Oil Gas Journal,1998,96(28):65-69.
    [13]
    张金波,鄢捷年.钻井液中暂堵剂颗粒尺寸分布优选的新理论和新方法[J].石油学报,2004,25(6):88-91,95. ZHANG Jinbo,YAN Jienian.New theory and method for optimizing the particle size distribution of bridging agents in drilling fluids[J].Acta Petrolei Sinica,2004,25(6):88-91,95.
    [14]
    徐生江,戎克生,李建国,等.阜东头屯河组强水敏性储层钻井液技术[J].石油钻探技术,2014,42(3):61-65. XU Shengjiang,RONG Kesheng,LI Jianguo,et al.Formation damage prevention drilling fluids for strong water sensitive formation of Toutunhe Group in Fudong Oilfield[J].Petroleum Drilling Techniques,2014,42(3):61-65.
    [15]
    DICK M A,HEINZ T J,SVOBODA C F,et al.Optimizing the selection of bridging particles for reservoir drilling fluids[R].SPE 58793,2000.
    [16]
    戎克生,李维轩,吴彬,等.广谱暂堵技术在新疆陆9井区砂岩储层保护中的应用[J].钻井液与完井液,2003,20(4):1-3. RONG Kesheng,LI Weixuan,WU Bin,et al.Multi-functional temporary plugging technology for sandstone formation protection of Block Lu 9 in Xinjiang Oilfield[J].Drilling Fluid Completion Fluid,2003,20(4):1-3.
    [17]
    徐同台,陈永浩,冯京海,等.广谱型屏蔽暂堵保护油气层技术的探讨[J].钻井液与完井液,2003,20(2):39-41. XU Tongtai,CHEN Yonghao,FENG Jinghai,et al.The general-purpose temporary shield plugging technology in protecting hydrocarbon reservoir[J].Drilling Fluid Completion Fluid,2003,20(2):39-41.
    [18]
    邱正松,张世锋,黄维安,等."多级孔隙最优充填"暂堵方法与现场试验[J].石油钻探技术,2012,40(5):17-21. QIU Zhengsong,ZHANG Shifeng,HUANG Weian,et al.Temporary plugging and field testing with "optimum filling for multi-stage pores" method[J].Petroleum Drilling Techniques,2012,40(5):17-21.
    [19]
    雷鸣,瞿佳,康毅力,等.川东北裂缝性碳酸盐岩气层钻井完井保护技术[J].断块油气田,2011,18(6):783-786. LEI Ming,QU Jia,KANG Yili,et al.Protection technology of drilling and well completion of fractured carbonate gas reservoir in Northeastern Sichuan Basin[J].Fault-Block Oil Gas Field,2011,18(6):783-786.
    [20]
    游利军,康毅力,陈一健,等.应用屏蔽暂堵技术提高致密砂岩气层测井识别能力[J].石油钻采工艺,2007,29(1):113-116. YOU Lijun,KANG Yili,CHEN Yijian,et al.Application of temporary and shielding plugging technology to improve well logging responses for tight sandstone gas reservoi[J].Oil Drilling Production Technology,2007,29(1):113-116.
    [21]
    郭丽梅,薛锦华,陈曦,等.新型屏蔽暂堵剂ZDJ室内性能评价[J].钻井液与完井液,2016,33(1):37-41,47. GUO Limei,XUE Jinhua,CHEN Xi,et al.Laboratory evaluation of a new temporary plugging agent ZDJ[J].Drilling Fluid Completion Fluid,2016,33(1):37-41,47.
    [22]
    SCOTT P D,BEARDMORE D H,WADE Z L,et al.Size degradation of granular lost circulation materials[R].SPE 151227,2012.
    [23]
    VALSECCHI P.On the shear degradation of lost-circulation materials[J].SPE Drilling Completion,2014,29(3):323-328.
    [24]
    YANG Lin.Comparative analysis of lost circulation material particle size and degradation in drilling fluids[D].Austin:The University of Texas at Austin,2015.
    [25]
    唐云.致密砂岩油藏水平井钻井完井液漏失损害诊断[D].成都:西南石油大学,2016. TANG Yun.Damage diagnosis of drilling fluid and completion fluid in horizontal well in tight sandstone reservoir[D].Chengdu:Southwest Petroleum University,2016.
    [26]
    GRANT P,LASSUSL,SAVARI S,et al.Size degradation studies of lost circulation materials in a flow loop[R].SPE 178774,2016.
  • Cited by

    Periodical cited type(20)

    1. 马铭,马峰. 干热岩储层精细地震勘探技术进展综述. 地球物理学进展. 2025(02): 460-471 .
    2. 戴一凡,侯冰,廖志豪. 基于相场法的深层干热岩储层水力压裂模拟研究. 石油钻探技术. 2024(02): 229-235 . 本站查看
    3. 陈作,赵乐坤,卫然,刘星. 深层地热热储改造技术进展与发展建议. 石油钻探技术. 2024(06): 10-15 . 本站查看
    4. 许富强,薛亚斐,宋先知,熊波,莫邵元. 废弃油井转地热井取热性能评价及井型对比. 石油钻探技术. 2024(06): 156-166 . 本站查看
    5. 陈海雯,宋荣彩,张超,梁元,王迎春,郑峰,王彦力,王洪辉. 基于因子分析法的干热岩地热资源热储评价. 成都理工大学学报(自然科学版). 2023(03): 333-350 .
    6. 刘汉青,胡才博,赵桂萍,石耀霖. 利用热-孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程——以青海共和盆地恰卜恰地区干热岩开发为例. 地球物理学报. 2023(07): 2887-2902 .
    7. 李厚民,李立兴,李小赛,沈宏飞,孙欣宇. 与花岗岩有关金属成矿系统的时-空-物结构初探. 矿产勘查. 2023(08): 1342-1349 .
    8. 包一翔,李井峰,郭强,蒋斌斌,苏琛. 二氧化碳用于地质资源开发及同步封存技术综述. 煤炭科学技术. 2022(06): 84-95 .
    9. 单丹丹,李玮,闫铁,李卓伦,逯广东,张弦. 增强型地热系统采热性能评价——以共和盆地恰卜恰地区干热岩储层为例. 天然气工业. 2022(10): 150-160 .
    10. 张召峰. 肯尼亚高温地热钻井技术在中国干热岩资源开发中的应用前景. 油气藏评价与开发. 2022(06): 833-842 .
    11. 张德龙,郭强,杨鹏,卢彤,吴烁,翁炜,刘宝林. 地热井花岗岩地层钻进提速技术研究与应用进展. 地质与勘探. 2022(05): 1082-1090 .
    12. 周健,曾义金,陈作,张保平,徐胜强. 青海共和盆地干热岩压裂裂缝测斜仪监测研究. 石油钻探技术. 2021(01): 88-92 . 本站查看
    13. 宋先知,李嘉成,石宇,许富强,曾义金. 多分支井地热系统注采性能室内实验研究. 石油钻探技术. 2021(01): 81-87 . 本站查看
    14. 张恒春,王稳石,李宽,王跃伟,闫家,曹龙龙,胡晨. KT178型取心钻具在共和干热岩钻井中的应用. 钻探工程. 2021(02): 29-34 .
    15. 田斌守,邵继新,司双龙,夏斌,蔺瑞山,杨海鸿. 中深层地岩热供暖技术在校园工程中的应用研究. 节能技术. 2021(01): 79-83 .
    16. 罗宏保,李俊萍,吴金生. 高温硬岩空气潜孔锤钻头设计. 钻探工程. 2021(04): 60-65 .
    17. 廖石宝,周玉辉,李伯英. CO_2抽取地热联合驱油封存一体化技术进展. 现代化工. 2021(09): 70-74 .
    18. CHEN Zuo,XU Guoqing,ZHOU Jian,LIU Jiankun. Fracture Network Volume Fracturing Technology in High-temperature Hard Formation of Hot Dry Rock. Acta Geologica Sinica(English Edition). 2021(06): 1828-1834 .
    19. 王恒,王磊,张东清,张进双. 干热岩钻井钻具磨损及防磨技术研究. 石油钻探技术. 2020(06): 47-53 . 本站查看
    20. 陈作,张保平,周健,刘红磊,周林波,吴春方. 干热岩热储体积改造技术研究与试验. 石油钻探技术. 2020(06): 82-87 . 本站查看

    Other cited types(16)

Catalog

    Article Metrics

    Article views (4375) PDF downloads (3952) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return