ZHOU Shunlin, YIN Shuai, WANG Fengqin, LI Dong, YI Wang. Experimental Analysis of the Effect of Stress on Shale Reservoir Brittleness and Its Application[J]. Petroleum Drilling Techniques, 2017, 45(3): 113-120. DOI: 10.11911/syztjs.201703020
Citation: ZHOU Shunlin, YIN Shuai, WANG Fengqin, LI Dong, YI Wang. Experimental Analysis of the Effect of Stress on Shale Reservoir Brittleness and Its Application[J]. Petroleum Drilling Techniques, 2017, 45(3): 113-120. DOI: 10.11911/syztjs.201703020

Experimental Analysis of the Effect of Stress on Shale Reservoir Brittleness and Its Application

More Information
  • Received Date: August 14, 2016
  • Revised Date: March 12, 2017
  • As well depth increases,formation rocks brittleness may be reduced and consequently manifest as ductile behavior.Conventional mineral composition can be used to assess the brittleness of shales.Because it does not take the impact of confining pressures (burial depths) into account,one arrives at less than satisfactory assessment conclusions.Under such circumstances,mechanical tests were conducted with continental deposit shale samples under different confining pressures and a strain method was deployed in a tested result analysis to highlight brittleness features of the shale.Research results showed that both elastic and plastic strains may increase with confining pressures while the brittleness index may decrease.Within the concerned Block,the brittleness index of shale at the depths of 1 250.00 m,2 500.00 m,3 500.00 m and between the interval of 3 500.00~5 000.00 m and 5 000.00~6 000.00 m fell approximately 5.97%,8.55%,10.74%,14.00% and 18.00%,respectively.With brittle minerals content in these shale reservoir formations over 65%,60%,55% and below 50%,the formation depth limitation for economic development of those reservoirs are determined to be 6 000.00 m,5 000.00 m,2 500.00 m and no commercial value,respectively.So the shale brittleness index determined from conventional mineral composition can be calibrated through quantification of impacts of stresses (burial depths) and it can provide help in the identification of intervals for staged hydraulic fracturing.
  • [1]
    DE SILVA P N K,SIMONS S J R,STEVENS P,et al.A comparison of North American shale plays with emerging non-marine shale plays in Australia[J].Marine and Petroleum Geology,2015,67:16-29.
    [2]
    ZHANG Decheng,RANJITH P G,PERERA M S A.The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing:a review[J].Journal of Petroleum Science and Engineering,2016,143:158-170.
    [3]
    尹帅,丁文龙,李昂,等.裂缝对致密碎屑岩储层弹性影响的数值分析[J].石油钻探技术,2016,44(2):112-118. YIN Shuai,DING Wenlong,LI Ang,et al.Numerical analysis on the effect of fractures on elastic properties of tight clastic reservoirs[J].Petroleum Drilling Techniques,2016,44(2):112-118.
    [4]
    LI Qinghui,CHEN Mian,ZHOU Yu,et al.Rock mechanical properties of shale gas reservoir and their influences on hydraulic fracture:International Petroleum Technology Conference,Beijing,March 26-28,2013[C].
    [5]
    陆益祥,潘仁芳,唐小玲,等.四川盆地威远地区龙马溪组页岩储层上下亚段脆性差异[J].断块油气田,2016,23(4):429-433. LU Yixiang,PAN Renfang,TANG Xiaoling,et al.Brittleness comparison between upper and lower sub-sections of Longmaxi Formation shalereservoir in Weiyuan,Sichuan Basin[J].Fault-Block Oil Gas Field,2016,23(4): 429-433.
    [6]
    蒋廷学,卞晓冰,苏瑗,等.页岩可压性指数评价新方法及应用[J].石油钻探技术,2014,42(5):16-20. JIANG Tingxue,BIAN Xiaobing,SU Yuan,et al.A new method for evaluating shale fracability index and its application[J].Petroleum Drilling Techniques,2014,42(5):16-20.
    [7]
    王建波,冯明刚,严伟,等.焦石坝地区页岩储层可压裂性影响因素及计算方法[J].断块油气田,2016,23(2):216-220,225.WANG Jianbo,FENG Minggang,YAN Wei,et al.Influence factors and evaluation methods for shale reservoir fracability in Jiaoshiba Area[J].Fault-Block Oil Gas Field,2016,23(2):216-220,225.
    [8]
    HOLT R M,FJAER E,STENEBRATEN J F,et al.Brittleness of shales:relevance to borehole collapse and hydraulic fracturing[J].Journal of Petroleum Science and Engineering,2015,131(1):200-209.
    [9]
    UIBU M,SOMELAR P,RAADO L M.Oil shale ash based backfilling concrete-strength development,mineral transformations andleachability[J].Construction and Building Materials,2016,102:620-630.
    [10]
    DEWHURST D N,SAROUT J,DELLE PIANE C A,et al.Empirical strength prediction for preserved shales[J].Marine and Petroleum Geology,2015,67:512-525.
    [11]
    JAEGER J C,COOK N G W,ZIMMERMAN R W,et al.Fundamentals of rock mechanics[M].4th ed.Oxford:Blackwell Publishing,2007:499-500.
    [12]
    刘君龙,纪友亮,杨克明,等.川西须家河组前陆盆地构造层序及沉积充填响应特征[J].中国石油大学学报(自然科学版),2015,39(6):11-23. LIU Junlong,JI Youliang,YANG Keming,et al.Tectono-stratigraphy and sedimentary infill characteristics of Xujiahe Formation in Western Sichuan foreland basin[J].Journal of China University of Petroleum(Edition of Natural Science),2015,39(6):11-23.
    [13]
    陈冬霞,刘雨晨,庞雄奇,等.川西坳陷须五段陆相页岩层系储层特征及对含气性的控制作用[J].地学前缘,2016,23(1):174-184. CHEN Dongxia,LIU Yuchen,PANG Xiongqi,et al.Reservoir characteristics and its control on gas-bearing properties of the 5th member of the Triassic Xujiahe Formation continental shale in the Sichuan Basin of China[J].Earth Science Frontiers,2016,23(1):174-184.
    [14]
    陈磊,姜振学,纪文明,等.川西坳陷须五段页岩微观孔隙结构发育控制因素及其成藏意义[J].煤炭学报,2015,40(增刊2):449-457. CHEN Lei,JIANG Zhenxue,JI Wenming,et al.Controlling factors and accumulation significance of microscopic pore structure in the fifth member of Xujiahe Formation in the Western Sichuan Depression[J].Journal of China Coal Society,2015,40(supplement2):449-457.
    [15]
    赵金洲,许文俊,李勇明,等.页岩气储层可压性评价新方法[J].天然气地球科学,2015,26(6):1165-1172. ZHAO Jinzhou,XU Wenjun,LI Yongming,et al.A new method for fracability evaluation of shale-gas reservoirs[J].Natural Gas Geoscience,2015,26(6):1165-1172.
    [16]
    郭天魁,张士诚,葛洪魁.评价页岩压裂形成缝网能力的新方法[J].岩土力学,2013,34(4):947-954. GUO Tiankui,ZHANG Shicheng,GE Hongkui.A new method for evaluating ability of forming fracture network in shale reservoir[J].Rock and Soil Mechanics,2013,34(4):947-954.
    [17]
    尹帅,丁文龙,孙雅雄,等.泥页岩单轴抗压破裂特征及UCS影响因素[J].地学前缘,2016,23(2):75-95. YIN Shuai,DING Wenlong,SUN Yaxiong,et al.Shale uniaxial compressive failure property and the affecting factors of UCS[J].Earth Science Frontiers,2016,23(2):75-95.
    [18]
    刁海燕.泥页岩储层岩石力学特性及脆性评价[J].岩石学报,2013,29(9):3300-3306. DIAO Haiyan.Rock mechanical properties and brittleness evaluation of shale reservoir[J].Acta Petrologica Sinica,2013,29(9):3300-3306.
  • Related Articles

    [1]WU Tianqian, SONG Wenyu, TAN Lingfang, ZHANG Junyi, YANG Chunwen, GUO Shenglai. Evaluation Method for Cementing Quality of Ultra-Low-Density Cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65-70. DOI: 10.11911/syztjs.2021111
    [2]LI Shuai, CHEN Junbin, ZHAO Qinlei. Experimental Study on the Scale Effect Law of Shale Strength and Deformation under Different Loading Modes[J]. Petroleum Drilling Techniques, 2020, 48(5): 39-48. DOI: 10.11911/syztjs.2020075
    [3]ZOU Deyong, WANG Gaoming, XING Chen. Experimental Study on Igneous Rock Abrasiveness[J]. Petroleum Drilling Techniques, 2020, 48(3): 41-46. DOI: 10.11911/syztjs.2020047
    [4]YAO Xiao, GE Zhuang, WANG Xiaojing, ZHOU Shiming, XIE Zhiyi, HE Qingshui. Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008
    [5]Lin Yongxue, Gao Shuyang, Zeng Yijin. Evaluation and Analysis of Rock Strength for the Longmaxi Shale[J]. Petroleum Drilling Techniques, 2015, 43(5): 20-25. DOI: 10.11911/syztjs.201505004
    [6]Lou Chenyang, Yao Xiao, He Deqing, Yu Sanyue, Han Yuanyuan, Zhang Pengwei. The Reinforcing Effect of Calcium-Based Whisker in High-Temperature Sand-Cement Mixtures[J]. Petroleum Drilling Techniques, 2015, 43(4): 91-95. DOI: 10.11911/syztjs.201504016
    [7]Yang Henglin, Shen Ruichen, Fu Li. Composition and Mechanical Properties of Gas Shale[J]. Petroleum Drilling Techniques, 2013, 41(5): 31-35. DOI: 10.3969/j.issn.1001-0890.2013.05.006
    [8]Guo Shenglai, Li Jianhua, Bu Yuhuan. Effect of Physical and Chemical Excitation on Slag Activity under Low Temperature[J]. Petroleum Drilling Techniques, 2013, 41(3): 31-34. DOI: 10.3969/j.issn.1001-0890.2013.03.006
    [9]Fan Honghai, Feng Guangqing, Xiao Wei, Ma Jinliang, Ye Zhi, Zhao Cong. New Approach for Real-Time Bit Wear Monitoring Based on the Theory of MSE[J]. Petroleum Drilling Techniques, 2012, 40(3): 116-120. DOI: 10.3969/j.issn.1001-0890.2012.03.024
    [10]Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008
  • Cited by

    Periodical cited type(8)

    1. 葛磊,杨春旭,郭兵,王志远,王子毓. 气侵后井底初始气泡平均直径预测模型实验研究. 石油钻探技术. 2023(02): 46-53 . 本站查看
    2. 王红一,张浩. 基于深度学习的两相流气泡末速度预测. 现代电子技术. 2022(15): 69-72 .
    3. 霍宏博,张启龙,李金泽,张磊,王文. 海洋钻井平台压井管汇注乙二醇参数优化. 石油工业技术监督. 2021(01): 27-30 .
    4. 刘煌,李瑞景,汪周华,王庆文. 酸性天然气生成水合物条件实验测定与应用. 特种油气藏. 2021(05): 154-160 .
    5. 苏文杰,权珊珊,赵国斌,赵宾,李首东. 天然气气井钻井安全管理实效性分析. 化工设计通讯. 2020(05): 258+262 .
    6. 李文强,焦守华,唐珂,杨宜昂,曲文海,柴翔. 静水中单气泡运动特性实验研究. 原子能科学技术. 2020(09): 1652-1659 .
    7. 李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 .
    8. 牛洪波,于政廉,孙菁,徐加放. 天然气水合物动力学抑制剂与水分子相互作用研究. 石油钻探技术. 2019(04): 29-34 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (6153) PDF downloads (5408) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return