ZHANG Hao, YANG Yong, QI Yaoguang, PAN Long, MAO Zhengyi. Method for Calculation of Stroke Losses in Carbon Fiber Continuous Sucker Rods[J]. Petroleum Drilling Techniques, 2017, 45(3): 95-101. DOI: 10.11911/syztjs.201703017
Citation: ZHANG Hao, YANG Yong, QI Yaoguang, PAN Long, MAO Zhengyi. Method for Calculation of Stroke Losses in Carbon Fiber Continuous Sucker Rods[J]. Petroleum Drilling Techniques, 2017, 45(3): 95-101. DOI: 10.11911/syztjs.201703017

Method for Calculation of Stroke Losses in Carbon Fiber Continuous Sucker Rods

More Information
  • Received Date: December 11, 2016
  • Revised Date: April 29, 2017
  • Carbon fiber continuous sucker rods are used extensively,but there are no techniques currently available for calculations related to the stroke losses of such rods.Conventional methods deployed for stroke losses in steel rods are characterized by significant errors.In extreme cases,such errors may lead to downhole collisions.By analyzing the materials in the carbon fiber continuous sucker rods and taking into consideration the structural features,the as well as impacts of working temperatures over carbon fiber composite materials and relevant elastic modulus,an innovative model to calculate the stroke losses in carbon fiber continuous sucker rods was developed.The model took the impact of rod vibration into account.Calculation results showed errors in calculated stroke losses were reduced from 33.1% of the conventional method to the present level of 3.6%,which can effectively satisfy accuracy requirement related to calculating stroke losses.Research results indicated the innovative calculation model could effectively remove problems related to significant errors and inaccurate adjustment of stoke tolerances in stoke loss calculation in carbon fiber continuous sucker rods.
  • [1]
    DELMONTE J.Properties of carbon/graphite composites[M].Huntington:Krieger Publishing Company,1987:51-86.
    [2]
    TANNER C J,BENDER R E,SIMSON A K,et al.Ribbon rod for use in oil well apparatus:US 4563391[P].1986-01-07.
    [3]
    FOLEY W L,HENSLEY H N.Ribbon rod:improvement in sucker rod technology shows need to re-evaluate current artificial lift installations[R].SPE 35708,1996.
    [4]
    HENSLEY H N,LEE J F.Ribbon rod development for beam pumping applications[J].Southwestern Petroleum Short Course,1994:44-55.
    [5]
    HENSLEY H N,TANNER C J.Graphite composite tape in beam-pumped oil wells[R].SPE 13200,1984.
    [6]
    TANNER C J,BENDER R E,SIMSON A K,et al.Oil well set-up and pumping apparatus:US 4416329[P].1983-11-22.
    [7]
    吴则中,田丰,张海宴,等.碳纤维复合材料连续抽油杆的特点及应用前景[J].石油机械,2002,30(2):53-56. WU Zezhong,TIAN Feng,ZHANG Haiyan,et al.Characteristics and application prospect of carbon fiber composite continuous sucker rod[J].China Petroleum Machinery,2002,30(2):53-56.
    [8]
    吴则中,田丰,顾雪林,等.我国碳纤维复合材料连续抽油杆的研制及应用[J].纤维复合材料,2004,21(3):30-35. WU Zezhong,TIAN Feng,GU Xuelin,et al.Development and application of carbon fiber reinforced plastic continuous sucker rod in China[J].Fiber Composites,2004,21(3):30-35.
    [9]
    王鸿勋,张琪.采油工艺原理[M].北京:石油工业出版社,1989:94-163. WANG Hongxun,ZHANG Qi.Principle of oil production process[M].Beijing:Petroleum Industry Press,1989:94-163.
    [10]
    曲占庆,张琪,王海勇,等.一种计算深井泵柱塞冲程的新方法[J].石油大学学报(自然科学版),2004,28(1):44-45,51. QU Zhanqing,ZHANG Qi,WANG Haiyong,et al.A new method for calculating plunger stroke of deep well pump[J].Journal of the University of Petroleum,China (Edition of Natural Science),2004,28(1):44-45,51.
    [11]
    陈厚,刘建军,张旺玺,等.新型碳纤维抽油杆的研制[J].化工科技,2001,9(2):13-15. CHEN Hou,LIU Jianjun,ZHANG Wangxi,et al.Development of new type carbon fiber sucker rod[J].Science Technology in Chemical Industry,2001,9(2):13-15.
    [12]
    薛承瑾.耐温型碳纤维拉挤复合材料连续抽油杆的制备和性能研究[J].北京化工大学学报,2003,30(4):55-59. XUE Chengjin.Study on the preparation and properties of temperature resistant carbon fiber reinforced composite continuous sucker rod[J].Journal of Beijing University of Chemical Technology,2003,30(4):55-59.
    [13]
    宇文双峰,王肯堂.碳纤维复合柔性连续抽油杆性能及矿场应用[J].钻采工艺,2003,26(4):69-71. YUWEN Shuangfeng,WANG Kentang.Performance and field application of carbon fiber composite flexible continuous sucker rod[J].Drilling Production Technology,2003,26(4):69-71.
    [14]
    王春耘,尚建中,王玉全.柔性抽油杆及其在采油工艺中的应用[J].石油钻采工艺,1999,21(4):82-85. WANG Chunyun,SHANG Jianzhong,WANG Yuquan.Flexible sucker rod and its application in oil production[J].Oil Drilling Production Technology,1999,21(4):82-85.
    [15]
    王志刚,乜冠祯,高军,等.碳纤维连续抽油杆在纯梁油田的应用[J].石油钻探技术,2005,33(4):58-59. WANG Zhigang,NIE Guanzhen,GAO Jun,et al.Applications of carbon fibre coiled rod in the Chunliang Block[J].Petroleam Drilling Techiques,2005,33(4):58-59.
    [16]
    陈从桂,于连玉,石世宏.机械设计中冲击载荷的定量分析[J].机械设计,2004,21(11):41-42,62. CHEN Conggui,YU Lianyu,SHI Shihong.Quantitative analysis of impact load in mechanical design[J].Journal of Machine Design,2004,21(11):41-42,62.
    [17]
    姜晓刚,段敬黎,贾彦杰,等.影响抽油泵有效功率的因素分析与建议[J].石油机械,2011,39(8):69-73. JIANG Xiaogang,DUAN Jingli,JIA Yanjie,et al.Analysis and suggestion on the factors affecting the effective power of the oil pump[J].China Petroleum Machinery,2011,39(8):69-73.
    [18]
    张琪.采油工程原理与设计[M].东营:石油大学出版社,2000:134-141. ZHANG Qi.Theory and design of oil recovery engineering[M].Dongying:Petroleum University Press,2000:134-141.
    [19]
    陈扬枝,朱文坚.机械设计中的材料设计方法问题[J].机械设计,1999,16(7):28-30. CHEN Yangzhi,ZHU Wenjian.Method of material design in mechanical design[J].Journal of Machine Design,1999,16 (7):28-30.
    [20]
    AKOVALI G.Handbook of composite fabrication[M].Telford:Rapra Technology Limited,2001:1-20.
    [21]
    梁国正,顾媛娟.双马来酰亚胺树脂[M].北京:化学工业出版社,1997:1-9. LIANG Guozheng,GU Yuanjuan.Bismaleimide resin[M].Beijing:Chemical Industry Press,1997:1-9.
    [22]
    惠嘉.温度对聚四氟乙烯材料特性的影响研究[J].火工品,2006 (1):46-48. HUI Jia.Study on the influence of temperature on the properties of PTFE material[J].Initiators Pyrotechnics,2006(1):46-48.
    [23]
    沈超.3238树脂及其改性[J].航空学报,2008,29(3):752-756. SHEN Chao.Resin 3238 and its modification[J].Acta Aeronautica ET Astronautica Sinica,2008,29(3):752-756.
    [24]
    贺福.碳纤维及其应用[M].北京:化学工业出版社,2004:237-303. HE Fu.Carbon fiber and its application[M].Beijing:Chemical Industry Press,2004:237-303.
    [25]
    王世明.温度与湿度环境对碳纤维复合材料力学行为的影响研究[D].南京:南京航空航天大学,2011. WANG Shiming.Effect of temperature and humidity environment on mechanical properties of carbon fiber composites[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.
    [26]
    郭海敏.生产测井导论[M].北京:石油工业出版社,2003:59-107. GUO Haimin.Introduction to production logging[M].Beijing:Petroleum Industry Press,2003:59-107.
    [27]
    林日亿,孙茂盛,张邵东,等.有杆抽油泵沉没度的优化设计方法[J].石油大学学报(自然科学版),2005,29(4):87-90. LIN Riyi,SUN Maosheng,ZHANG Shaodong,et al.Optimum design method of the sinking degree of a sucker rod pump[J].Journal of the University of Petroleum,China (Edition of Natural Science),2005,29(4):87-90.
    [28]
    刘汉成.抽汲混气原油时合理沉没度的计算方法[J].石油钻采工艺,1995,17(5):90-93. LIU Hancheng.Swabbing reasonable submergence degree calculation method of mixed gas of crude oil[J].Oil Drilling Production Technology,1995,17(5):90-93.
    [29]
    傅耀军.中低温热储及其井中热场[J].地球学报,2000,21(2):207-211. FU Yaojun.Medium-low temperature geothermal reservoir and its thermal field in drilling well[J].Acta Geoscientica Sinica,2000,21(2):207-211.
  • Related Articles

    [1]SUN Weifeng, LIU Kai, ZHANG Dezhi, LI Weihua, XU Liming, DAI Yongshou. A Kick and Lost Circulation Monitoring Method Combining Bi-GRU and Drilling Conditions[J]. Petroleum Drilling Techniques, 2023, 51(3): 37-44. DOI: 10.11911/syztjs.2023043
    [2]XI Pengfei, YANG Minghe, GUO Wangheng, SHI Jiangang. A Method for Identifying Abnormally Compacted Strata Based on the Fluctuation of Interval Transit Time Data[J]. Petroleum Drilling Techniques, 2019, 47(6): 111-115. DOI: 10.11911/syztjs.2019136
    [3]GUO Xianwei, RU Dajun, WANG Haiyan, YANG Chun, LIU Zhixuan, HAO Nan. Cause Analysis on Abnormal Pulse Signals of BH-VDT Vertical Drilling Tool[J]. Petroleum Drilling Techniques, 2018, 46(3): 59-64. DOI: 10.11911/syztjs.2018044
    [4]ZHU Zhiqiang, LI Yunpeng, LYU Zuobin, MENG Zhiqiang, YANG Zhicheng. An Analytical Method for Fracture Distribution and Water Production Regularity in a Buried-Hill Reservoir[J]. Petroleum Drilling Techniques, 2018, 46(1): 117-121. DOI: 10.11911/syztjs.2018033
    [5]Liu Xiushan, Qi Shangyi, Liu Ziheng. Analytical Algorithm for Normal-Plane Scanning of Interwell Distance[J]. Petroleum Drilling Techniques, 2015, 43(2): 8-13. DOI: 10.11911/syztjs.201502002
    [6]Zhang Lijun, Tian Ji, Zhu Guojin. Evaluation Methods for Initial Productivity of Directional Wells in Offshore Fault Block Oilfields[J]. Petroleum Drilling Techniques, 2015, 43(1): 111-116. DOI: 10.11911/syztjs.201501019
    [7]Yu Fu, Jin Yan, Chen Mian, Niu Chengcheng, Li Xiaoyi. Analysis of Response Characteristic of P-Wave Velocity in Abnormal Over-Pressure Formation[J]. Petroleum Drilling Techniques, 2014, 42(2): 23-27. DOI: 10.3969/j.issn.1001-0890.2014.02.005
    [8]Bai Yuhu, Yang Hao, Chen Guihua, Feng Ruyong. An Uncertainty Analysis Method on Typical Production Decline Curve for Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(4): 97-100. DOI: 10.3969/j.issn.1001-0890.2013.04.021
    [9]Guan Zhichuan, Wei Kai, Fu Shenglin, Zhao Tingfeng. Risk Evaluation Method for Drilling Engineering Based on Interval Analysis[J]. Petroleum Drilling Techniques, 2013, 41(4): 15-18. DOI: 10.3969/j.issn.1001-0890.2013.04.004
    [10]Well Killing Methods for Deepwater Well and Adaptability Analysis[J]. Petroleum Drilling Techniques, 2011, 39(2): 45-49. DOI: 10.3969/j.issn.1001-0890.2011.02.008
  • Cited by

    Periodical cited type(5)

    1. 李飞,王一帆,吕方兴. 基于压缩感知的井下钻具状态预警方法研究. 石油机械. 2024(09): 1-9 .
    2. 宋巍,胡中志,周岩,沈园园,魏纳. 基于钻柱动力学的井筒摩阻系数预测与应用. 西南石油大学学报(自然科学版). 2020(01): 84-90 .
    3. 谷磊. 自适应钻头与井下动力钻具研究进展. 装备机械. 2020(02): 22-26 .
    4. 孔华,兰凯,刘香峰,刘明国,晁文学,郗刘明. 基于振动实测的非均质地层钻头失效分析与对策. 天然气工业. 2019(12): 110-115 .
    5. 张霞,张涛,李玉梅,黄升. 基于EMD的井下近钻头振动数据分析. 北京信息科技大学学报(自然科学版). 2019(06): 59-63 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (5849) PDF downloads (5323) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return