SHU Xiaobo, MENG Yingfeng, LI Gao. Bionic Technique-Based Treatment Fluid for Wellbore Stability in Drilling through Shale Formations[J]. Petroleum Drilling Techniques, 2017, 45(3): 15-20. DOI: 10.11911/syztjs.201703003
Citation: SHU Xiaobo, MENG Yingfeng, LI Gao. Bionic Technique-Based Treatment Fluid for Wellbore Stability in Drilling through Shale Formations[J]. Petroleum Drilling Techniques, 2017, 45(3): 15-20. DOI: 10.11911/syztjs.201703003

Bionic Technique-Based Treatment Fluid for Wellbore Stability in Drilling through Shale Formations

More Information
  • Received Date: November 29, 2016
  • Revised Date: March 06, 2017
  • Using bionic treatment fluid while drilling through shale formations was developed by optimization of bionic treatment agents based on the "lotus effect" of plant leaves. The goal was to solve wellbore instability issues due to water production while drilling through shale gas formations. Experimental tests were used to evaluate the performance of such bionic treatment fluid. The tests results showed that the bionic treatment fluid could effectively reduce surface energy of shales and form bump structures at a micro or nano scale in the same way that those on lotus or taro leaves convert the shale surface from hydrophilic to hydrophobic (the contact angle of fresh water is larger than 120°) which prevents shales from absorbing water and to enhance shale strength while in water solution. In addition,hydrophobic surfaces generated by the bionic treatment fluid have certain abrasion resistance and thermal stability,and are not affected by the salinity of formation water. The bionic treatment fluid is applicable to neutral or alkaline formations with temperatures under 80 ℃. In summary,it is an effective measure for solving wellbore instability issues in drilling through shale gas formations because,based on the bionic theory,it is possible to prevent clay hydration through water adsorption.
  • [1]
    魏武,邓虎,李皋,等.气体钻井井壁稳定处理剂评价方法探讨[J].天然气工业,2010,30(9):51-54. WEI Wu,DENG Hu,LI Gao,et al.A discussion on the evaluation methods of the additives for wellbore stability in gas drilling[J].Natural Gas Industry,2010,30(9):51-54.
    [2]
    陈烨,闫铁,孙晓峰,等.气体钻井地层出水量与钻具黏卡风险预测模型[J].断块油气田,2015,22(6):807-811. CHEN Ye,YAN Tie,SUN Xiaofeng,et al.Formation water production and risk prediction model of stuck pipe during gas drilling[J].Fault-Block Oil Gas Field,2015,22(6):807-811.
    [3]
    卓云,胡显智,郑霞,等.气体钻井遇地层出水时的充气钻井技术[J].天然气工业,2011,31(8):73-75. ZHUO Yun,HU Xianzhi,ZHENG Xia,et al.Aerated drilling used during gas drilling when encountering the formation water invasion[J].Natural Gas Industry,2011,31(8):73-75.
    [4]
    侯珊珊,罗春芝,张炳杰,等.泥页岩抑制剂LFW-1的室内研究[J].断块油气田,2015,22(6):833-836. HOU Shanshan,LUO Chunzhi,ZHANG Bingjie,et al.Laboratory study on LFW-1 shale inhibitor[J].Fault-Block Oil Gas Field,2015,22(6):833-836.
    [5]
    丁乙,梁利喜,刘向君,等.温度和化学耦合作用对泥页岩地层井壁稳定性的影响[J].断块油气田,2016,23(5):663-667. DING Yi,LIANG Lixi,LIU Xiangjun,et al.Influence of temperature and chemical on wellbore stability in clay shale formation[J].Fault-Block Oil Gas Field,2016,23(5):663-667.
    [6]
    周玉良,孟英峰,李皋,等.气体钻井条件下泥页岩自发吸水规律研究[J].石油钻探技术,2009,37(6):31-34. ZHOU Yuliang,MENG Yingfeng,LI Gao,et al.A study on shale spontaneous water imbibition in gas drilling wells[J].Petroleum Drilling Techniques,2009,37(6):31-34.
    [7]
    刘厚彬,孟英峰,李皋,等.泥页岩水化作用对岩石强度的影响[J].钻采工艺,2010,33(6):18-20. LIU Houbin,MENG Yingfeng,LI Gao,et al.Theoretical simulation and experimental evaluation of the effect of hydration on the shale rock strength[J].Drilling Production Technology,2010,33(6):18-20.
    [8]
    SMITH F W.Advancements in air drilling during 1958[R].API-59-244,1959.
    [9]
    冯光通,胥豪,唐波,等.超吸水材料在气体钻井井眼干燥中的应用探讨[J].石油钻探技术,2014,42(3):38-44. FENG Guangtong,XU Hao,TANG Bo,et al.Discussion on the application of super-absorbent polymer in gas drilling to dry wellbore[J].Petroleum Drilling Techniques,2014,42(3):38-44.
    [10]
    孙久荣,戴振东.仿生学的现状和未来[J].生物物理学报,2007,23(2):109-115. SUN Jiurong,DAI Zhendong.Bionics today and tomorrow[J].Acta Biophysica Sinica,2007,23(2):109-115.
    [11]
    姜立萍,黄磊.荷叶效应功能在防污涂料中的应用[J].材料保护,2013,46(2):44-47. JIANG Liping,HUANG Lei.Application of self-cleaning effect of lotus leaf in development of antifouling paints[J].Materials Protection,2013,46(2):44-47.
    [12]
    BHUSHAN B,JUNG Y C,NOSONOVSKY M.Springer handbook of nanotechnology[M].Berlin/Heidelberg:Springer,2010:1437-1524.
    [13]
    黄志宇,张太亮,鲁红升.表面及胶体化学[M].北京:石油工业出版社,2012:19-28. HUANG Zhiyu,ZHANG Tailiang,LU Hongsheng.Surface and colloid chemistry[M].Beijing:Petroleum Industry Press,2012:19-28.
    [14]
    袁志庆.超疏水表面的仿生构建[D].长沙:中南大学,2008. YUAN Zhiqing.Bionic fabrication of superhydrophobic surfaces[D].Changsha:Central South University,2008.
    [15]
    CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
  • Related Articles

    [1]YU Libin, ZHANG Zhigang, JIANG Zhaomin, XU Hui, ZHANG Hongfu, HAN Xurui. Development and Field Testing of the Bionic Peristaltic Drilling Tool[J]. Petroleum Drilling Techniques, 2025, 53(1): 55-59. DOI: 10.11911/syztjs.2024113
    [2]LIU Junyi, LI Gongrang, HUANG Limin, MA Xiaoyong, XIA Ye. Research and Application of Environmental Protection Technologies for Drilling Fluid Treatment in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(3): 47-52. DOI: 10.11911/syztjs.2023110
    [3]LI Ran, LI Wenzhe, ZHANG Jiayin, LIU Yang. Drilling Fluid Technology for Ultra-Large Wellbore in the Upper Part of 10 000-Meter Deep Well SDCK1[J]. Petroleum Drilling Techniques, 2024, 52(2): 93-99. DOI: 10.11911/syztjs.2024040
    [4]LI Fan, LI Daqi, JIN Junbin, ZHANG Dujie, FANG Junwei, WANG Weiji. Drilling Fluid Technology for Wellbore Stability of the Diabase Formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61-67. DOI: 10.11911/syztjs.2022041
    [5]WU Zebing, XI Kaikai, ZHAO Haichao, HUANG Hai, ZHANG Wenchao, YANG Chenjuan. Simulation Study on Temperature Field and Rock Breaking Characteristics of the Bionic PDC Cutter in Rotating State[J]. Petroleum Drilling Techniques, 2022, 50(2): 71-77. DOI: 10.11911/syztjs.2021114
    [6]WANG Jing. Treatment Technology of Waste Drilling Fluids in the Linxing-Shenfu Well Area[J]. Petroleum Drilling Techniques, 2022, 50(1): 60-64. DOI: 10.11911/syztjs.2021112
    [7]REN Wen, LIU Xiaohui, LI Shenglin, WANG Fei, TONG Kun, ZHANG Mingdong. Electro-Sorption Treatment Method for Waste High Performance Water-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2020, 48(4): 50-55. DOI: 10.11911/syztjs.2020046
    [8]ZHANG Ping. Wellbore Enhancing Technology for 444.5 mm Openhole Section in Well SHBP1 by Means of Drilling Fluid Optimization[J]. Petroleum Drilling Techniques, 2018, 46(3): 27-33. DOI: 10.11911/syztjs.2018075
    [9]LIU Xiangjun, DING Yi, LUO Pingya, LIANG Lixi. The Impact of Drilling Unloading on Wellbore Stability of Shale Formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10-16. DOI: 10.11911/syztjs.2018005
    [10]Wang Yong, Yan Jienian, Wu Jiang, Li Zhiyong, Xu Shengjiang, Wei Huoyun. New Technology of Wasted Drilling Fluid Treatment in Environmentally Sensitive Areas[J]. Petroleum Drilling Techniques, 2014, 42(2): 64-68. DOI: 10.3969/j.issn.1001-0890.2014.02.013
  • Cited by

    Periodical cited type(8)

    1. 傅玉,蒲杨. 长裸眼水平段超深井完井液密度对井壁稳定的重要性剖析. 天然气技术与经济. 2024(06): 15-19+63 .
    2. 钟成兵,罗霄. 基于疏水改性的纳米二氧化硅页岩稳定剂的制备及性能评价. 钻采工艺. 2023(01): 153-158 .
    3. 于军泉,安玉秀,马京缘,庞少聪. 高性能页岩封堵剂的合成及其性能. 石油化工. 2022(07): 806-814 .
    4. 房孟,杨浩. 多胺基聚乙烯亚胺页岩抑制性能研究. 应用化工. 2022(12): 3434-3439 .
    5. 刘建设,马京缘,屈炜佳,安玉秀. 环保型页岩抑制剂壳聚糖铵盐的性能研究. 云南化工. 2019(05): 26-30+33 .
    6. Yanbao GUO,Zheng ZHANG,Siwei ZHANG. Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction. 2019(04): 289-306 .
    7. 王平全,王建龙,白杨,邓嘉丁,青胜兰. 新型水基钻井液在延长油田页岩气水平井的应用. 石油与天然气化工. 2018(05): 79-84 .
    8. 邱正松,暴丹,李佳,刘均一,陈家旭. 井壁强化机理与致密承压封堵钻井液技术新进展. 钻井液与完井液. 2018(04): 1-6 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (6204) PDF downloads (5605) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return