CHEN Zuo, ZHOU Jian, ZHANG Xu, WU Chunfang, ZHANG Xiaoyu. The Principle of Induced Stress Change Caused by Multi-Wells and Multi-Fractures during Synchronous Fracturing of Cluster Horizontal Wells in Tight Sandstone Gas Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(6): 78-83. DOI: 10.11911/syztjs.201606013
Citation: CHEN Zuo, ZHOU Jian, ZHANG Xu, WU Chunfang, ZHANG Xiaoyu. The Principle of Induced Stress Change Caused by Multi-Wells and Multi-Fractures during Synchronous Fracturing of Cluster Horizontal Wells in Tight Sandstone Gas Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(6): 78-83. DOI: 10.11911/syztjs.201606013

The Principle of Induced Stress Change Caused by Multi-Wells and Multi-Fractures during Synchronous Fracturing of Cluster Horizontal Wells in Tight Sandstone Gas Reservoirs

More Information
  • Received Date: July 11, 2016
  • Revised Date: October 09, 2016
  • During synchronous fracturing of horizontal well clusterd, the induced stresses generated by multiple wells and fractures may significantly affect fracturing design and the formation of complex fractures. Few studies have been conducted related to patterns of changes in induced stress fields. In the study that concerns itself with this topic, the mathematic model for the horizontal stress field between wells was constructed. By using linear superposition and vector representation, patterns of changes in induced stress fields between two wells at different fracture parameters and well spacing were highlighted. Research results demonstrated variable impact based on factors on induced stress field. To be more specific, the induced stress fields were extremely sensitive to changes in fracture lengths and well spacing. The maximum induced stress could be observed at the central point between two neighboring wells, whereas the minimum stress could be observed at the sidewalls. To divert fractures to generate complicated fracture systems, it was necessary to establish suitable matching among fracturing techniques, fracture length, width and well spacing. Underground micro-seismic monitoring results in Daniudi DP43 well cluster verified accuracy of above research results. In addition, these results might also provide an acceptable explanation for the high productivity of synchronous fracturing operations in zippered fractures of horizontal well clusters. Generally speaking, a clear understanding of changes in induced stress fields in horizontal clusters might provide a reliable foundation for the determination of optimal well spacing and a fracturing program for horizontal well clusters to develop tight sandstone formations.
  • [1]
    OLSON Jon E,WU Kan.Sequential vs.simultaneous multizone fracturing in horizontal wells:insights from a non-planar,multifrac numerical model[R].SPE 152602,2012.
    [2]
    韩春艳,朱炬辉,耿周梅,等.应力阴影在水平井水力压裂增产作业中的重要性[J].天然气工业,2014,34(增刊1):66-69. HAN Chunyan,ZHU Juhui,GENG Zhoumei,et al.The importance of stress shadows in hydraulic fracturing horizontal well operations[J].Natural Gas Industry,2014,34(supplement 1):66-69.
    [3]
    才博,唐邦忠,丁云宏,等.应力阴影效应对水平井压裂的影响[J].天然气工业,2014,34(7):55-59. CAI Bo,TANG Bangzhong,DING Yunhong,et al.Influence of stress shadow on horizontal well fracturing[J].Natural Gas Industry,2014,34(7):55-59.
    [4]
    刘雨,艾池.多级压裂诱导应力作用下天然裂缝开启规律研究[J].石油钻探技术,2015,43(1):20-26. LIU Yu,AI Chi.Opening of natural fractures under induced stress in multi-stage fracturing[J].Petroleum Drilling Techniques,2015,43(1):20-26.
    [5]
    ROUSSEL N P,SHARMA M M.Optimizing fracture spacing and sequencing in horizontal well fracturing[R].SPE 127986,2011.
    [6]
    李忠兴,屈雪峰,刘万涛,等.鄂尔多斯盆地长7段致密油合理开发方式探讨[J].石油勘探与开发,2015,42(1):217-221. LI Zhongxing,QU Xuefeng,LIU Wantao,et al.Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin,NW China[J].Petroleum Exploration and Development,2015,42(1):217-221.
    [7]
    潘林华,张士诚,程礼军,等.水平井"多段分簇"压裂簇间干扰的数值模拟[J].天然气工业,2014,34(1):74-79. PAN Linhua,ZHANG Shicheng,CHENG Lijun,et al.A numerical simulation of the inter-cluster interference in multi-cluster staged fracking for horizontal wells[J].Natural Gas Industry,2014,34(1):74-79.
    [8]
    郭建春,周鑫浩,邓燕.页岩气水平井组拉链压裂过程中地应力的分布规律[J].天然气工业,2015,35(7):44-48. GUO Jianchun,ZHOU Xinhao,DENG Yan.Shale gas zipper group of horizontal well fracturing in-situ stress distribution[J].Natural Gas Industry,2015,35(7):44-48.
    [9]
    曾义金.页岩气开发的地质与工程一体化技术[J].石油钻探技术,2014,42(1):1-4. ZENG Yijin.Integration technology of geology engineering for shale gas development[J].Petroleum Drilling Techniques,2014,42(1):1-4.
    [10]
    陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):30-32. CHEN Zuo,XUE Chengjin,JIANG Tingxue,et al.Proposals for the application of fracturing by stimulated reservoir volume (SRV) in shale gas wells in China[J].Natural Gas Industry,2010,30(10):30-32.
    [11]
    何青,李国峰,陈作,等.丛式水平井井组压裂工艺技术研究及试验[J].石油钻探技术,2014,42(4):79-82. HE Qing,LI Guofeng,CHEN Zuo,et al.Study and test of horizontal well cluster fracturing technology[J].Petroleum Drilling Techniques,2014,42(4):79-82.
    [12]
    李国峰,秦玉英,刘恋,等.丛式水平井组整体压裂工艺技术在致密低渗透气藏中的应用[J].天然气工业,2013,33(8):49-53. LI Guofeng,QIN Yuying,LIU Lian,et al.Application of overall fracturing technology for cluster horizontal wells to the development of low-permeability tight gas reservoirs[J].Natural Gas Industry,2013,33(8):49-53.
    [13]
    曾青冬,姚军.水平井多裂缝同步扩展数值模拟[J].石油学报,2015(12):1571-1571. ZENG Qingdong,YAO Jun.Numerical simulation of multiple fractures simultaneous propagation in horizontal wells[J].Acta Petrolei Sinica,2015(12):1571-1571.
    [14]
    尹建,郭建春,曾凡辉.水平井分段压裂射孔间距优化方法[J].石油钻探技术,2012,40(5):67-71. YIN Jian,GUO Jianchun,ZENG Fanhui.Perforation spacing optimization for staged fracturing of horizontal well[J].Petroleum Drilling Techniques,2012,40(5):67-71.
    [15]
    郭天魁,张士诚,刘卫来,等.页岩储层射孔水平井分段压裂的起裂压力[J].天然气工业,2013,33(12):1-6. GUO Tiankui,ZHANG Shicheng,LIU Weilai,et al.Initiation pressure of multi-stage fracking for perforated horizontal wells of shale gas reservoirs[J].Natural Gas Industry,2013,33(12):1-6.
    [16]
    周健,张保平,李克智,等.基于地面测斜仪的"井工厂"压裂裂缝监测技术[J].石油钻探技术,2015,43(3):71-75. ZHOU Jian,ZHANG Baoping,LI Kezhi,et al.Fracture monitoring technology based on surface tiltmeter in "well factory" fracturing[J].Petroleum Drilling Techniques,2015,43(3):71-75.
  • Related Articles

    [1]LI Heting, DAI Junqing, LI Zhenxiang. Practices and Understandings of Acid Fracturing of Ultra/Extra-Deep Exploratory Wells in Sichuan Basin and Its Periphery[J]. Petroleum Drilling Techniques, 2024, 52(2): 202-210. DOI: 10.11911/syztjs.2024026
    [2]ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, BI Yantao. New Progress and Prospects for Sinopec’s Petroleum Engineering Technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149-158. DOI: 10.11911/syztjs.2023021
    [3]LI Jianhui, LI Xiang, YUE Ming, DA Yinpeng, DONG Qi, CHANG Du. Productivity Model and Seepage Rules for the Broadband Fracturing of Ultra-Low Permeability Reservoirs in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(6): 112-119. DOI: 10.11911/syztjs.2022085
    [4]ZHANG Jinhong. Present Status and Development Prospects of Sinopec Shale Oil Engineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8-13. DOI: 10.11911/syztjs.2021072
    [5]CHEN Zuo, LIU Honglei, LI Yingjie, SHEN Ziqi, XU Guoqing. The Current Status and Development Suggestions for Shale Oil Reservoir Stimulation at Home and Abroad [J]. Petroleum Drilling Techniques, 2021, 49(4): 1-7. DOI: 10.11911/syztjs.2021081
    [6]LU Baoping. New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1-10. DOI: 10.11911/syztjs.2021001
    [7]MA Lanrong, CHENG Guangming, DAI Wenchao. Design and Testing of the Stimulation Tool for Pinnate Branch Tubes[J]. Petroleum Drilling Techniques, 2020, 48(4): 72-77. DOI: 10.11911/syztjs.2020061
    [8]LI Ang, YANG Wanyou, DING Qianshen, KANG Shaofei, YANG Wei, WU Feipeng. Testing and Evaluation of Reinforced Reservoir Stimulations Using Composite Electrothermal-Chemical Shock Waves[J]. Petroleum Drilling Techniques, 2020, 48(1): 72-79. DOI: 10.11911/syztjs.2019129
    [9]SHI Yuanpeng, CHENG Xiaodong, JIANG Wei, LI Linbo, HE Chunming, CAI Bo. High Efficiency Stimulation Technology for Different Sedimentary Formations in the Erlian Basin[J]. Petroleum Drilling Techniques, 2018, 46(3): 103-108. DOI: 10.11911/syztjs.2018061
    [10]WENG Dingwei, FU Haifeng, LU Yongjun, ZHENG Lihui, MA Jianjun. A Model for Predicting the Volume of Stimulated Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(1): 95-100. DOI: 10.11911/syztjs.201601018
  • Cited by

    Periodical cited type(44)

    1. 赵金洲,雍锐,胡东风,佘朝毅,付永强,吴建发,蒋廷学,任岚,周博,林然. 中国深层—超深层页岩气压裂:问题、挑战与发展方向. 石油学报. 2024(01): 295-311 .
    2. 王利,南亚坤,许朔,曹运兴,田林,张军胜,石玢. 水力压裂体积张开度-应力扰动本构关系及压裂效果调控. 力学学报. 2024(07): 2150-2163 .
    3. Jinzhou Zhao,Tong Wu,Wanfen Pu,Du Daijun,Qingyuan Chen,Bowen Chen,Jintao Li,Yitao Huang. Application status and research progress of CO_2 fracturing fluid in petroleum engineering: A brief review. Petroleum. 2024(01): 1-10 .
    4. 王溯,陈勉,吕嘉昕. 水力压裂多裂缝扩展诱发光纤应变演化试验研究. 石油机械. 2024(08): 101-107 .
    5. 王溯,陈勉,吕嘉昕,郝亚龙,初京义. 水平井水力压裂裂缝扩展诱发垂直邻井光纤应变演化特征. 东北石油大学学报. 2024(04): 100-110+141 .
    6. 张雪龄,谷军恒,叶强,邓佳,朱维耀,程传晓,金听祥,吴学红. 分子模拟技术在页岩油气吸附和流动特性研究中的应用进展. 中国海上油气. 2023(03): 103-115 .
    7. 王利,郭小辉,曹运兴,石玢,刘晓,赵立朋,李耀谦. 基于RVE尺度的水力压裂应力扰动模型. 煤炭学报. 2023(S1): 82-95 .
    8. 杜书恒,沈文豪,赵亚溥. 页岩储层应力敏感性定量评价:思路及应用. 力学学报. 2022(08): 2235-2247 .
    9. 孙玉学,郭春萍,赵景原,付洪涛,白相双,张立春,李城里. 低毒高性能油基钻井液研制与评价. 大庆石油地质与开发. 2021(02): 95-102 .
    10. 舒志国,刘莉,梁榜,陆亚秋,郑爱维,包汉勇. 基于物质平衡原理的页岩气井产能评价方法. 天然气地球科学. 2021(02): 262-267 .
    11. 李郑涛,张震,吴鹏程,马天寿,付建红. 川南深层各向异性页岩井壁失稳力学机理. 西南石油大学学报(自然科学版). 2021(04): 11-25 .
    12. 曹文科,幸雪松,周长所. 基于节理塑性模型的页岩地层水平井井壁稳定性分析. 中国安全生产科学技术. 2021(10): 152-157 .
    13. 高彦芳,任战利,丁帅伟,陈勉,金衍. 非常规油气开采过程中的可相变多孔介质物理模型研究及参数识别. 石油钻采工艺. 2021(05): 632-641 .
    14. 卢运虎,杨典儒,金衍,梁川. 深层龙马溪组页岩气藏黏土矿物水岩作用微观机制. 地球化学. 2020(01): 76-83 .
    15. 赵亚洲,庞忠和,马智博,周传辉,马凌. 地热储多场多相数值模拟与介尺度技术进展. 科技促进发展. 2020(Z1): 359-366 .
    16. 吴峙颖,路保平,胡亚斐,蒋廷学. 压裂多级裂缝内动态输砂物理模拟实验研究. 石油钻探技术. 2020(04): 106-110 . 本站查看
    17. 蔡承政,任科达,杨玉贵,胡国忠. 液氮压裂作用下页岩破裂特征试验研究. 岩石力学与工程学报. 2020(11): 2183-2203 .
    18. 刘洋,艾婷,张朝鹏,覃黎,张茹. 基于MTS 815岩石力学试验机的直接剪切测试夹具设计. 实验科学与技术. 2020(05): 85-90 .
    19. 袁亮. 煤及共伴生资源精准开采科学问题与对策. 煤炭学报. 2019(01): 1-9 .
    20. 张树翠,孙可明. 储层非均质性和各向异性对水力压裂裂纹扩展的影响. 特种油气藏. 2019(02): 96-100 .
    21. 刘曰武,高大鹏,李奇,万义钊,段文杰,曾霞光,李明耀,苏业旺,范永波,李世海,鲁晓兵,周东,陈伟民,傅一钦,姜春晖,侯绍继,潘利生,魏小林,胡志明,端祥刚,高树生,沈瑞,常进,李晓雁,柳占立,魏宇杰,郑哲敏. 页岩气开采中的若干力学前沿问题. 力学进展. 2019(00): 1-236 .
    22. 韩强,屈展,叶正寅. 基于均匀化理论的页岩微观多孔黏土强度特性. 力学学报. 2019(03): 940-948 .
    23. 夏宏泉,刘畅,王瀚玮,赵昊,周灵烨. 页岩含气量测井评价方法研究. 特种油气藏. 2019(03): 1-6 .
    24. 韩强,屈展,叶正寅. 基于多尺度均匀化理论的页岩强度表征. 石油学报. 2019(07): 858-865 .
    25. 韩强,屈展,叶正寅,董广建. 基于微米力学实验的页岩Ⅰ型断裂韧度表征. 力学学报. 2019(04): 1245-1254 .
    26. 马鸿彦,王大宁,张杰,赵会忠,李清碧,张鹏宇,王伟. 旋转导向系统在深层页岩油水平井的应用. 钻采工艺. 2019(04): 16-19+7 .
    27. 张晨晨,刘滋,董大忠,王玉满,蒋珊,管全中. 深层海相页岩脆性特征分析与表征. 新疆石油地质. 2019(05): 555-563 .
    28. 肖佳林,李奎东,高东伟,包汉勇. 涪陵焦石坝区块水平井组拉链压裂实践与认识. 中国石油勘探. 2018(02): 51-58 .
    29. 蒋秀,张艳玲,王江云,屈定荣. 水力压裂过程中套管内流动冲蚀损伤规律研究. 油气井测试. 2018(01): 48-54 .
    30. 韩强,屈展,叶正寅. 页岩多尺度力学特性研究现状. 应用力学学报. 2018(03): 564-570+690 .
    31. 廖勇,谭判,石文睿,冯爱国,何浩然. 涪陵页岩气储层产气性评价方法. 石油钻探技术. 2018(05): 69-75 . 本站查看
    32. 包兴,李少华,张程,乔博,李君,耿会民. 基于试验设计的概率体积法在页岩气储量计算中的应用. 断块油气田. 2017(05): 678-681 .
    33. 熊健,刘向君,梁利喜. 甲烷在页岩黏土矿物孔中的赋存力学机制. 断块油气田. 2017(04): 500-505 .
    34. 盛茂,田守嶒,李根生,葛洪魁,廖华林,李召坤. 高压水射流冲蚀作用下页岩破坏模式与力学机制. 中国科学:物理学 力学 天文学. 2017(11): 99-106 .
    35. 卢运虎,梁川,金衍,陈勉. 高温下页岩水化损伤的各向异性实验研究. 中国科学:物理学 力学 天文学. 2017(11): 138-145 .
    36. 陈勉,金衍,卢运虎. 页岩气开发:岩石力学的机遇与挑战. 中国科学:物理学 力学 天文学. 2017(11): 6-18 .
    37. 王迪,陈勉,金衍,卢运虎. 考虑毛细管力的页岩储层压裂缝网扩展研究. 中国科学:物理学 力学 天文学. 2017(11): 66-77 .
    38. 解宇宁. 低毒环保型油基钻井液体系室内研究. 石油钻探技术. 2017(01): 45-50 . 本站查看
    39. 杨恒林,乔磊,田中兰. 页岩气储层工程地质力学一体化技术进展与探讨. 石油钻探技术. 2017(02): 25-31 . 本站查看
    40. 曹明. 页岩气压裂试气工程技术进展. 中国矿业. 2017(S2): 359-362 .
    41. 李根生,盛茂,田守嶒,葛洪魁,黄中伟,宋先知. 页岩气储层水平井与压裂工程基础问题探讨. 科学通报. 2016(26): 2883-2890 .
    42. 熊力坤,王升,徐烽淋,朱洪林,陈乔. 涪陵焦石坝区块页岩动静态弹性模量转换关系研究. 石油钻探技术. 2016(05): 40-44 . 本站查看
    43. 王迪,金衍,陈勉,孙一流,杨亮. 毛细管力影响下页岩储层液化石油气压裂裂缝网络扩展形态研究. 中国科技论文. 2016(21): 2440-2444 .
    44. 黄进,吴雷泽,游园,黄晓凯,聂彬,张辉. 涪陵页岩气水平井工程甜点评价与应用. 石油钻探技术. 2016(03): 16-20 . 本站查看

    Other cited types(22)

Catalog

    Article Metrics

    Article views (6812) PDF downloads (10773) Cited by(66)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return