LIN Yongxue, WANG Xianguang, LI Rongfu. Development of Oil-Based Drilling Fluid with Low Oil-Water Ratio and Its Application to Drilling Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 28-33. DOI: 10.11911/syztjs.201602005
Citation: LIN Yongxue, WANG Xianguang, LI Rongfu. Development of Oil-Based Drilling Fluid with Low Oil-Water Ratio and Its Application to Drilling Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 28-33. DOI: 10.11911/syztjs.201602005

Development of Oil-Based Drilling Fluid with Low Oil-Water Ratio and Its Application to Drilling Horizontal Shale Gas Wells

More Information
  • Received Date: October 14, 2015
  • Revised Date: January 27, 2016
  • In order to meet the requirement of wellbore stabilization and good performance of drilling fluids during the drilling of shale gas horizontal wells and realize commercial development at a low cost and with high efficiency, a stable oil-base drilling fluid system with low oil-water ratio was developed to accommodate the characteristics of shale reservoirs and the engineering requirements of horizontal wells. It is shown from experimental tests that this oil-base drilling fluid system is good in terms of thermal stability, contamination resistance, plugging capacity and emulsion stability. In addition, it has lower plastic viscosity, moderate shear and better rheological property. Therefore, a stable oil-based drilling fluid system can satisfy the unique conditions in drilling horizontal of shale gas wells. The oil-based drilling fluid system has been applied in 5 horizontal wells drilling in Fuling Shale Gas Field. Through low oil-water ratio gel maintenance, solid phase control and plugging while drilling, the oil-water ratio was kept below 70/30, 15% lower than previously used oil based drilling fluids in this gas field. Further, drillings cost were reduced significantly. In summary, drilling costs in the Fuling Shale Gas Field could be reduced effectively by using an oil-based drilling fluid system with a low oil-water ratio in horizontal shale gas wells. This system will provide strong support in the low-cost commercial development of shale gas and used as a model in the development of shale gas in other areas within China.
  • [1]
    王中华.国内外油基钻井液研究与应用进展[J].断气块气田,2011,18(4):533-537. WANG Zhonghua.Research and application progress of oil-based drilling fluid at home and abroad[J].Fault-Block Oil Gas Field,2011,18(4):533-537.
    [2]
    林永学,王显光.中国石化页岩气油基钻井液技术进展与思考[J].石油钻探技术,2014,42(4):7-13. LIN Yongxue,WANG Xianguang.Development and reflection of oil-based drilling fluid technology for shale gas of Sinopec[J].Petroleum Drilling Techniques,2014,42(4):7-13.
    [3]
    艾军,张金成,臧艳彬,等.涪陵页岩气田钻井关键技术[J].石油钻探技术,2014,42(5):9-15. AI Jun,ZHANG Jincheng,ZANG Yanbin,et al.The key drilling technologies in Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2014,42(4):9-15.
    [4]
    陶怀志,吴正良,贺海,等.国产油基钻井液CQ-WOM首次在页岩气威远H3-1井试验[J].钻采工艺,2014,37(5):87-90. TAO Huaizhi,WU Zhengliang,HE Hai,et al.Tests of oil-base drilling fluid CQ-WOM made in China in Weiyuan H3-1 shale gas well[J].Drilling Production Technology,2014,37(5):87-90.
    [5]
    刘明华,孙举,王阳,等.油基钻井液在中原油田非常规油气藏开发中的应用[J].中外能源,2013,18(7):38-41. LIU Minghua,SUN Ju,WANG Yang,et al.Application of oil-based drilling fluid in unconventional oil-gas reservoirs,Zhongyuan Oilfield[J].Sino-Global Energy,2013,18(7):38-41.
    [6]
    吴彬,王荐,舒福昌,等.油基钻井液在页岩油气水平井的研究与应用J].石油天然气学报,2014,36(2):101-104. WU Bin,WANG Jian,SHU Fuchang,et al.Study and application of oil-based drilling fluids for horizontal well drilling[J].Journal of Oil and Gas Technology,2014,36(2):101-104.
    [7]
    李建成,杨鹏,关键,等.新型全油基钻井液体系[J].石油勘探与开发,2014,41(4):490-496. LI Jiancheng,YANG Peng,GUAN Jian,et al.A new type of whole oil-based drilling fluid[J].Petroleum Exploration and Development,2014,41(4):490-496.
    [8]
    李学庆,杨金荣,尹志亮,等.油基钻井液含油钻屑无害化处理工艺技术[J].钻井液与完井液,2013,30(4):81-83. LI Xueqing,YANG Jinrong,YIN Zhiliang,et al.Novel harmless treating technology of oily cuttings[J].Drilling Fluid Completion Fluid,2013,30(4):81-83.
    [9]
    王显光,李雄,林永学.页岩水平井用高性能油基钻井液研究与应用[J].石油钻探技术, 2013,41(2):17-22. WANG Xianguang,LI Xiong,LIN Yongxue.Research and application of high performance oil-base drilling fluid for shale horizontal wells[J].Petroleum Drilling Techniques,2013,41(2):17-22.
    [10]
    鄢捷年.钻井液工艺学[M].东营:石油大学出版社,2001:240-260. YAN Jienian.Drilling fluid technology[M].Dongying:Petroleum University Press,2001:240-260.
    [11]
    肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003:51-52. XIAO Jinxin,ZHAO Zhenguo.Application principle of surfactants[M].Beijing:Chemical Industry Press,2003:51-52.
    [12]
    LOEPPKE G E,GLOWKA D A,WRIGHT E K.Design and evaluation of lost-circulation materials for severe environments[J].Journal of Petroleum Technology,1990,42(3):328-337.
  • Related Articles

    [1]YU Libin, ZHANG Zhigang, JIANG Zhaomin, XU Hui, ZHANG Hongfu, HAN Xurui. Development and Field Testing of the Bionic Peristaltic Drilling Tool[J]. Petroleum Drilling Techniques, 2025, 53(1): 55-59. DOI: 10.11911/syztjs.2024113
    [2]LIU Junyi, LI Gongrang, HUANG Limin, MA Xiaoyong, XIA Ye. Research and Application of Environmental Protection Technologies for Drilling Fluid Treatment in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(3): 47-52. DOI: 10.11911/syztjs.2023110
    [3]LI Ran, LI Wenzhe, ZHANG Jiayin, LIU Yang. Drilling Fluid Technology for Ultra-Large Wellbore in the Upper Part of 10 000-Meter Deep Well SDCK1[J]. Petroleum Drilling Techniques, 2024, 52(2): 93-99. DOI: 10.11911/syztjs.2024040
    [4]LI Fan, LI Daqi, JIN Junbin, ZHANG Dujie, FANG Junwei, WANG Weiji. Drilling Fluid Technology for Wellbore Stability of the Diabase Formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61-67. DOI: 10.11911/syztjs.2022041
    [5]WU Zebing, XI Kaikai, ZHAO Haichao, HUANG Hai, ZHANG Wenchao, YANG Chenjuan. Simulation Study on Temperature Field and Rock Breaking Characteristics of the Bionic PDC Cutter in Rotating State[J]. Petroleum Drilling Techniques, 2022, 50(2): 71-77. DOI: 10.11911/syztjs.2021114
    [6]WANG Jing. Treatment Technology of Waste Drilling Fluids in the Linxing-Shenfu Well Area[J]. Petroleum Drilling Techniques, 2022, 50(1): 60-64. DOI: 10.11911/syztjs.2021112
    [7]REN Wen, LIU Xiaohui, LI Shenglin, WANG Fei, TONG Kun, ZHANG Mingdong. Electro-Sorption Treatment Method for Waste High Performance Water-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2020, 48(4): 50-55. DOI: 10.11911/syztjs.2020046
    [8]ZHANG Ping. Wellbore Enhancing Technology for 444.5 mm Openhole Section in Well SHBP1 by Means of Drilling Fluid Optimization[J]. Petroleum Drilling Techniques, 2018, 46(3): 27-33. DOI: 10.11911/syztjs.2018075
    [9]LIU Xiangjun, DING Yi, LUO Pingya, LIANG Lixi. The Impact of Drilling Unloading on Wellbore Stability of Shale Formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10-16. DOI: 10.11911/syztjs.2018005
    [10]Wang Yong, Yan Jienian, Wu Jiang, Li Zhiyong, Xu Shengjiang, Wei Huoyun. New Technology of Wasted Drilling Fluid Treatment in Environmentally Sensitive Areas[J]. Petroleum Drilling Techniques, 2014, 42(2): 64-68. DOI: 10.3969/j.issn.1001-0890.2014.02.013
  • Cited by

    Periodical cited type(8)

    1. 傅玉,蒲杨. 长裸眼水平段超深井完井液密度对井壁稳定的重要性剖析. 天然气技术与经济. 2024(06): 15-19+63 .
    2. 钟成兵,罗霄. 基于疏水改性的纳米二氧化硅页岩稳定剂的制备及性能评价. 钻采工艺. 2023(01): 153-158 .
    3. 于军泉,安玉秀,马京缘,庞少聪. 高性能页岩封堵剂的合成及其性能. 石油化工. 2022(07): 806-814 .
    4. 房孟,杨浩. 多胺基聚乙烯亚胺页岩抑制性能研究. 应用化工. 2022(12): 3434-3439 .
    5. 刘建设,马京缘,屈炜佳,安玉秀. 环保型页岩抑制剂壳聚糖铵盐的性能研究. 云南化工. 2019(05): 26-30+33 .
    6. Yanbao GUO,Zheng ZHANG,Siwei ZHANG. Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction. 2019(04): 289-306 .
    7. 王平全,王建龙,白杨,邓嘉丁,青胜兰. 新型水基钻井液在延长油田页岩气水平井的应用. 石油与天然气化工. 2018(05): 79-84 .
    8. 邱正松,暴丹,李佳,刘均一,陈家旭. 井壁强化机理与致密承压封堵钻井液技术新进展. 钻井液与完井液. 2018(04): 1-6 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (3080) PDF downloads (2889) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return