JIA Lichun, CHEN Mian, TAN Qingming, SUN Zhen, WU Siyue. Key Factors for Inhibiting Fracture Propagation during Leakage Control under Pressure[J]. Petroleum Drilling Techniques, 2016, 44(1): 49-56. DOI: 10.11911/syztjs.201601010
Citation: JIA Lichun, CHEN Mian, TAN Qingming, SUN Zhen, WU Siyue. Key Factors for Inhibiting Fracture Propagation during Leakage Control under Pressure[J]. Petroleum Drilling Techniques, 2016, 44(1): 49-56. DOI: 10.11911/syztjs.201601010

Key Factors for Inhibiting Fracture Propagation during Leakage Control under Pressure

More Information
  • Received Date: April 27, 2015
  • Revised Date: October 19, 2015
  • In order to minimize lost circulation time while drilling through fractured formations, lost circulation plugging materials are generally used to prevent fracture propagation under pressure. So far, however, no further analysis has been performed on the key factors that arrest or inhibit fracturing. In this paper, a related study was conducted. First, analysis was conducted on fracture pressure variation after leakage control. Second, a formula for the fracture terminations and a stress intensity factor induced by fracture pressure was derived using the principle of superposition. And third, the influencing factors of the stress intensity factor were analyzed. It is shown that the stress intensity factor decreases with the increase of plugging length, drilling fluid viscosity, and the decrease of the plugging permeability, and consequently arrest/inhibition of propagation conditions are gradually satisfied. The stress intensity factor increases as fracture length or subsurface pressure increases or plugging location gradually approaching fracture terminations. The higher the stress intensity factor is, the more difficult the fracture inhibition. The functional relationships between the stress intensity factor induced by fracture pressure and other parameters are as follows. The formula shows approximately a cubic relationship with plugging length and location, linear relationship with drilling fluid viscosity and subsurface pressure, approximately a logarithmic relationship with plugging permeability, and power relationship with fracture length. In summary, fracture propagation can be stopped through optimizing circulation lost materials and improving drilling fluid properties if the fracture length and subsurface pressure are constant or out of control during pressured leakage control.
  • [1]
    徐同台,刘玉杰,申威,等.钻井工程防漏堵漏技术[M].北京:石油工业出版社,1997:1-34. XU Tongtai,LIU Yujie,SHEN Wei,et al.The plugging technology in drilling engineering[M].Beijing:Petroleum Industry Press,1997:1-34.
    [2]
    王业众,康毅力,游利军,等.裂缝性储层漏失机理及控制技术进展[J].钻井液与完井液,2007,24(4):74-77. WANG Yezhong,KANG Yili,YOU Lijun,et al.Progresses in mechanism study and control:mud losses to fractured reservoirs[J].Drilling Fluid Completion Fluid,2007,24(4):74-77.
    [3]
    MORITA N,BLACK A D,FUH G F.Theory of lost circulation pressure[R].SPE 20409,1990.
    [4]
    FUH Giin-Fa,MORITA N,BOYD P A,et al.A new approach to preventing lost circulation while drilling[R].SPE 24599,1992.
    [5]
    ALBERTY M W,MCLEAN M R.A physical model for stress cages[R].SPE 90943,2004.
    [6]
    DUPRIEST F E.Fracture closure stress (FCS) and lost returns practices[R].SPE/IADC 92192,2005.
    [7]
    WANG H,TOWLER B F,SOLIMAN M Y.Fractured wellbore stress analysis:sealing cracks to strengthen a wellbore[R].SPE/IADC 104947,2007.
    [8]
    WANG H,SOLIMAN M Y,TOWLER B F.Investigation of factors for strengthening a wellbore by propping fractures[R].SPE 112629,2008.
    [9]
    AADNOY B S,ANGEL M,JERQUERA A,et al.Design of well barriers to combat circulation losses[R].SPE 105449,2007.
    [10]
    王贵,蒲晓林,文志明,等.基于断裂力学的诱导裂缝性井漏控制机理分析[J].西南石油大学学报:自然科学版,2011,33(1):131-134. WANG Gui,PU Xiaolin,WEN Zhiming,et al.Mechanism of controlling lost circulation in induced fracture formation based on fracture mechanics[J].Journal of Southwest Petroleum University:Science Technology Edition,2011,33(1):131-134.
    [11]
    王贵,蒲晓林.提高地层承压能力的钻井液堵漏作用机理[J].石油学报,2010,31(6):1009-1012. WANG Gui,PU Xiaolin.Plugging mechanism of drilling fluid by enhancing wellbore pressure[J].Acta Petrolei Sinica,2010,31(6):1009-1012.
    [12]
    杨沛,陈勉,金衍,等.裂缝承压能力模型及其在裂缝地层堵漏中的应用[J].岩石力学与工程学报,2012,31(3):479-487. YANG Pei,CHEN Mian,JIN Yan,et al.Crack pressure bearing capacity model and its application to plugging of fractured formation[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(3):479-487.
    [13]
    贾利春,陈勉,张伟,等.诱导裂缝性井漏止裂封堵机理分析[J].钻井液与完井液,2013,30(5):82-85. JIA Lichun,CHEN Mian,ZHANG Wei,et al.Plugging mechanism of induced fracture for controlling lost circulation[J].Drilling Fluid Completion Fluid,2013,30(5):82-85.
    [14]
    吕开河.钻井工程中井漏预防与堵漏技术研究与应用[D].青岛:中国石油大学(华东)石油工程学院,2007. LYU Kaihe.Study and application of lost circulation resistance and control technology during drilling[D].Qingdao:China University of Petroleum(Huadong),School of Petroleum Engineering,2007.
    [15]
    薛玉志,刘振东,唐代绪,等.裂缝性地层堵漏配方及规律性研究[J].钻井液与完井液,2009,26(6):28-30. XUE Yuzhi,LIU Zhendong,TANG Daixu,et al.Study on the formulation of lost circulation control fluid and the laws of lost circulation control for fractured formations[J].Drilling Fluid Completion Fluid,2009,26(6):28-30.
    [16]
    程仲,熊继有,程昆,等.物理法随钻堵漏技术的试验研究[J].石油钻探技术,2009,37(1):53-57. CHENG Zhong,XIONG Jiyou,CHENG Kun,et al.Experimental studies on sealing while drilling using physical materials[J].Petroleum Drilling Techniques,2009,37(1):53-57.
    [17]
    SAVARI S,KUMAR A,WHITFILL D L,et al.Engineered LCM design yileds novel activating materials for potential application in severe lost circulation scenarios[R].SPE 164748,2013.
    [18]
    KEFI S,LEE J C,SHINDGIKAR N D,et al.Optimizing in four steps composite lost circulation pills without knowing loss zone width[R].IADC/SPE 133735,2010.
    [19]
    LEOPPKE G E,GLOWKA D A,WRIGHT E K.Design and evaluation of lost-circulation materials for severe environments[J].JPT,1990,42(3):328-337.
    [20]
    李家学,黄进军,罗平亚,等.裂缝地层随钻刚性颗粒封堵机理与估算模型[J].石油学报,2011,32(3):509-513. LI Jiaxue,HUANG Jinjun,LUO Pingya,et al.Plugging mechanism and estimation models of rigid particles while drilling in fracture formations[J].Acta Petrolei Sinica,2011,32(3):509-513.
    [21]
    KAAGESON-LOE N,SANDERS M W,GROWCOCK F,et al.Particulate-based loss-prevention material:the secrets of fracture sealing revealed[R].IADC/SPE 112595,2008.
    [22]
    FREQUIN D,BEDRIKOVETSKY P,ZITHA P L J.CT scan study of the leak-off of oil-based drilling fluids into saturated media[R].SPE 165193,2013.
    [23]
    阿特金森B K.岩石断裂力学[M].尹祥础,修济刚,译.北京:地震出版社,1992:76-119. ATKINSON B K.Frature mechanics of rock[M].YIN Xiangchu,XIU Jigang,translated.Beijing:Earthquake Press,1992:76-119.
    [24]
    CHEKHONIN E,LEVONYAN K.Hydraulic fracture propagation in highly permeable formations,with applications to tip screenout[J].International Journal of Rock Mechanics and Mining Sciences,2012,50:19-28.
  • Cited by

    Periodical cited type(22)

    1. 邓华根,韩成,王应好. 海上页岩油探井测试大规模压裂技术及实践. 化学工程与装备. 2025(02): 38-42 .
    2. 柳军,袁明健,杜智刚. 分簇射孔管串泵送排量模型及影响因素分析. 中国海上油气. 2025(02): 198-209 .
    3. 杜辉,范克明,吴晨宇,石胜男,王力,李庆松. 大庆泥页岩储层支撑剂嵌入导流能力实验研究. 石油工业技术监督. 2024(01): 1-6 .
    4. 李兴,廉冬. 页岩油伴生气二氧化碳浓度连续监测技术研究. 石油化工自动化. 2024(01): 77-79 .
    5. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 .
    6. 王成龙,韩成,徐靖,郭宇堃,陈力. 海上大规模压裂地面流程设计及研究. 中国高新科技. 2024(06): 81-83 .
    7. 刘正伟,余常燕,余琦昌,梁云,王勇. 页岩油藏提高采收率技术现状、瓶颈及对策. 化学工程师. 2024(06): 64-68 .
    8. Li Wang,Chen-Hao Gao,Rui-Ying Xiong,Xiao-Jun Zhang,Ji-Xiang Guo. Development review and the prospect of oil shale in-situ catalysis conversion technology. Petroleum Science. 2024(02): 1385-1395 .
    9. 张茜,苏玉亮,王文东,文嘉熠. 基于多段压裂缝-井筒耦合流动模型的页岩油水平井段长度优化研究. 油气地质与采收率. 2024(03): 112-122 .
    10. 郭旭升,魏志红,魏祥峰,刘珠江,陈超,王道军. 四川盆地侏罗系陆相页岩油气富集条件及勘探方向. 石油学报. 2023(01): 14-27 .
    11. 廖璐璐,李根生,宋先知,冯连勇,高启超,程世忠. 我国脱碳路径与油公司能源转型策略研究. 石油钻探技术. 2023(01): 115-122 . 本站查看
    12. 杨晋玉,陈晓平,李超,郑奎,张宝娟,陈春恒. 基于经济效益评价的页岩油水平井加密调整参数优化——以鄂尔多斯盆地XAB油田长7页岩油藏为例. 中国石油勘探. 2023(04): 129-138 .
    13. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    14. 孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 .
    15. 范明福,明鑫,明柱平,邱伟. 基质型页岩油储层高导流体积缝网压裂技术. 断块油气田. 2023(05): 721-727 .
    16. 吴刚,刘其伦,钟小军,王孝超,冯汉斌,赵政嘉. 束鹿页岩油密切割压裂技术——以SY302X井为例. 油气井测试. 2023(05): 36-43 .
    17. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    18. 夏娜. 页岩油储层压裂改造. 化学工程与装备. 2022(03): 47-48 .
    19. 李凤霞,王海波,周彤,韩玲. 页岩油储层裂缝对CO_2吞吐效果的影响及孔隙动用特征. 石油钻探技术. 2022(02): 38-44 . 本站查看
    20. 张矿生,唐梅荣,陶亮,杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术. 石油钻探技术. 2022(02): 9-15 . 本站查看
    21. 刘红磊,徐胜强,朱碧蔚,周林波,黄亚杰,李保林. 盐间页岩油体积压裂技术研究与实践. 特种油气藏. 2022(02): 149-156 .
    22. 黄越,金智荣. 花庄区块页岩油密切割体积压裂对策研究. 石油地质与工程. 2022(05): 96-100 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (2984) PDF downloads (3249) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return