Wang Tong, Sun Yongtao, Zou Jian, Zhou Fayuan, Zhang Wei, Zhang Hua. Key Tools for Assuring a High Efficiency Heat Injection String for Multiple Thermal Fluids in Offshore Wells[J]. Petroleum Drilling Techniques, 2015, 43(6): 93-97. DOI: 10.11911/syztjs.201506017
Citation: Wang Tong, Sun Yongtao, Zou Jian, Zhou Fayuan, Zhang Wei, Zhang Hua. Key Tools for Assuring a High Efficiency Heat Injection String for Multiple Thermal Fluids in Offshore Wells[J]. Petroleum Drilling Techniques, 2015, 43(6): 93-97. DOI: 10.11911/syztjs.201506017

Key Tools for Assuring a High Efficiency Heat Injection String for Multiple Thermal Fluids in Offshore Wells

More Information
  • Received Date: June 07, 2015
  • Revised Date: November 08, 2015
  • At present, the simple heat injection string pipes used by multiple thermal fluids technology in offshore wells have poor whole-pipe thermal insulation, and are uneven in multiple thermal fluid injection of horizontal sections. In order to solve these problems, high-efficiency injection strings for offshore multiple thermal fluids were designed by developing key thermal insulation tools and step heat injection tools and by designing horizontal sections for heat injection by sections. The thermal insulation section of the string consists of insulated tubing, insulated coupling, insulated centralizer, insulated compensator and insulated packer. Due to its excellent insulation performance on the whole, the heat loss of injected thermal fluids dropped. Its horizontal section, which could implement even heat injection in horizontal sections, consisted of uniform fill-up valves, segmenting packers and tubing centralizers. All key insulated tools and step heat injection tools could meet the requirements for long-term operation at 330 degrees and with Grade D in heat insulation performance. The uniform heat allocation device had been applied 7 times to wells with implementation of uniform heat injection in horizontal sections. In summary, multiple thermal fluids could be injected efficiently offshore by using the high-efficiency multiple thermal fluid injection strings together with the corresponding key tools.
  • [1]
    唐晓旭,马跃,孙永涛.海上稠油多元热流体吞吐工艺研究及现场试验[J].中国海上油气,2011,23(3):185-188. Tang Xiaoxu,Ma Yue,Sun Yongtao.Research and field test of complex thermal fluid huff and puff technology for offshore viscous oil recovery[J].China Offshore Oil and Gas,2011,23(3):185-188.
    [2]
    刘敏,高孝田,邹剑,等.海上特稠油热采SAGD技术方案设计[J].石油钻采工艺,2013,35(4):94-96. Liu Min,Gao Xiaotian,Zou Jian,et al.SAGD technology conceptual design of thermal recovery explore for offshore extra-heavy oil[J].Oil Drilling Production Technology,2013,35(4):94-96.
    [3]
    林涛,孙永涛,孙玉豹,等.多元热流体返出气增产技术研究[J].断块油气田,2013,20(1):126-128. Lin Tao,Sun Yongtao,Sun Yubao,et al.Enhanced recovery technique of return gas from multiple thermal fluids[J].Fault-Block Oil Gas Field,2013,20(1):126-128.
    [4]
    薛婷,檀朝东,孙永涛.多元热流体注入井筒的热力计算[J].石油钻采工艺,2012,34(5):61-64. Xue Ting,Tan Chaodong,Sun Yongtao.Thermodynamic calculation on multiple fluid in thermal recovery wellbore[J].Oil Drilling Production Technology,2012,34(5):61-64.
    [5]
    梁丹,冯国智,曾祥林,等.海上稠油两种热采方式开发效果评价[J].石油钻探技术,2014,42(1):95-99. Liang Dan,Feng Guozhi,Zeng Xianglin,et al.Evaluation of two thermal methods in offshore heavy oilfields development[J].Petroleum Drilling Techniques,2014,42(1):95-99.
    [6]
    房军,贾朋,薛世峰.水平井蒸汽均匀配注参数设计[J].石油机械,2010,38(3):31-33. Fang Jun,Jia Peng,Xue Shifeng.Uniform horizontal well steam injection allocation parameter design[J].China Petroleum Machinery,2010,38(3):31-33.
    [7]
    韩允祉,盖平原,张紫军,等.深层稠油超临界压力注汽管柱设计[J].石油钻探技术,2005,33(3):64-65. Han Yunzhi,Ge Pingyuan,Zhang Zijun,et al.Design of steam injection pipe set for producing deep heavy oil under over critical pressure[J].Petroleum Drilling Techniques,2005,33(3):64-65.
    [8]
    易勇刚,张传新,于会永,等.新疆油田水平井分段完井注汽技术[J].石油钻探技术,2012,40(6):79-83. Yi Yonggang,Zhang Chuanxin,Yu Huiyong,et al.Segregated completion and subsection steam injection for horizontal wells in Xinjiang Oilfield[J].Petroleum Drilling Techniques,2012,40(6):79-83.
    [9]
    刘坤芳,张兆银,孙晓明,等.注蒸汽井套管热应力分析及管柱强度设计[J].石油钻探技术,1994,22(4):36-40,61. Liu Kunfang,Zhang Zhaoyin,Sun Xiaoming,et al.Analyses of steam-injected well casing thermal stress and casing string strength design[J].Petroleum Drilling Techniques,1994,22(4):36-40,61.
    [10]
    刘花军,孙永涛,王新根,等.海上热采封隔器密封件的优选试验研究[J].钻采工艺,2015,38(3):80-83. Liu Huajun,Sun Yongtao,Wang Xingen,et al.Optimization test on seal elements of packers for offshore thermal recovery[J].Drilling Production Technology,2015,38(3):80-83.
    [11]
    GB/T 20970—2007/ISO 14310:2001 石油天然气工业井下工具:封隔器和桥塞[S]. GB/T 20970—2007/ISO 14310:2001 Petroleum and natural gas industries:downhole equipment:packers and bridge plugs[S].
    [12]
    SY/T 6304—1997 注蒸汽封隔器及井下补偿器技术条件[S]. SY/T 6304—1997 Technical standard of thermal packer and expansion joint[S].
    [13]
    SY/T 5324—2013 预应力隔热油管[S]. SY/T 5324—2013 Pre-stress insucated tubing[S].
  • Related Articles

    [1]YUAN Jianwei, LIU Meijia, LI Chao, WU Chunxin, MA Dong. Research on Boundary Correction Coefficient of Horizontal Wells in Narrow Channel Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(1): 86-90. DOI: 10.11911/syztjs.2022056
    [2]SAIFULLA Dilmurat, DONG Changyin, LI Yanlong, CHEN Qiang, LIU Chenfeng, WANG Haoyu. Influence Law of Hybrid Plugging of Gravel-Packed Media on Productivityin Natural Gas Hydrate Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(5): 94-101. DOI: 10.11911/syztjs.2022055
    [3]WANG Qinghui, ZHU Ming, FENG Jin, GUAN Yao, HOU Boheng. A Method for Predicting Productivity of Sandstone Reservoirs Based on Permeability Synthesis Technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105-112. DOI: 10.11911/syztjs.2021122
    [4]LI Jiang, CHEN Xianchao, GAO Ping, SHU Chenglong. A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111-116. DOI: 10.11911/syztjs.2021032
    [5]Dong Changyin, Zhang Qinghua, Cui Mingyue, Wang Peng, Gao Yancai, Li Xiaobo. A Dynamic Sanding Prediction Model for Unconsolidated Sandstone Reservoirs with Complicated Production Conditions[J]. Petroleum Drilling Techniques, 2015, 43(6): 81-86. DOI: 10.11911/syztjs.201506015
    [6]Ma Shuai, Zhang Fengbo, Hong Chuqiao, Liu Shuangqi, Zhong Jiajun, Wang Shichao. Development and Solution to the Coupling Model of the Productivity of Interbeded Reserviors in Stepped Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(5): 94-99. DOI: 10.11911/syztjs.201505016
    [7]Wei Xuemei. Numerical Simulation of Steam Huff-and-Puff Assisted Catalytic Aquathermolysis on Heavy Oil[J]. Petroleum Drilling Techniques, 2015, 43(3): 103-108. DOI: 10.11911/syztjs.201503019
    [8]Zhao Yizhong, Sun Sangdun, Gao Aihua, Zhi Qingong, Li Peng. Long-Term Sand Control Technology for Multiple Round Steam Huff and Puff Wells in Heavy Oil Reservoirs[J]. Petroleum Drilling Techniques, 2014, 42(3): 90-94. DOI: 10.3969/j.issn.1001-0890.2014.03.017
    [9]Meng Hongxia, Chen Dechun, Pan Zhihua, Wu Xiaodong. Productivity Calculation Models and Stimulation Ratio Analysis for Explosive Fracturing Wells[J]. Petroleum Drilling Techniques, 2012, 40(6): 62-66. DOI: 10.3969/j.issn.1001-0890.2012.06.013
    [10]Liu Yinshan, Li Zhiping, Lai Fengpeng, Ma Hongze, Ren Guanglei. Productivity Prediction Model of Horizontal Gas Wells with Noncoplanar Fractures[J]. Petroleum Drilling Techniques, 2012, 40(4): 96-101. DOI: 10.3969/j.issn.1001-0890.2012.04.019
  • Cited by

    Periodical cited type(5)

    1. 简旭,李皋,王军,韩旭,黄兵,王松涛. 气体钻井声波超前测距方法与数值模拟. 石油钻探技术. 2022(03): 132-138 . 本站查看
    2. 高永德,王世越,常波涛,孙殿强,陈鸣,王超,张磊. 基于随钻前视探测技术的异常高压气层综合识别方法. 天然气工业. 2022(10): 98-106 .
    3. 张晓诚,霍宏博,林家昱,刘海龙,李进. 渤海油田裂缝性油藏地质工程一体化井漏预警技术. 石油钻探技术. 2022(06): 72-77 . 本站查看
    4. 杨书博,乔文孝,赵琪琪,倪卫宁,吴金平. 随钻前视声波测井钻头前方声场特征研究. 石油钻探技术. 2021(02): 113-120 . 本站查看
    5. 林昕,苑仁国,秦磊,刘素周,苏朝博,卢中原,于忠涛,谭伟雄. 地质导向钻井前探技术现状及进展. 特种油气藏. 2021(02): 1-10 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return