Zhao Jinzhou, Liu Peng, Li Yongming, Mao Jincheng. The Properties of Non-Aqueous Fracturing Fluid with Low-Molecular Alkane Suitable for Shales[J]. Petroleum Drilling Techniques, 2015, 43(5): 15-19. DOI: 10.11911/syztjs.201505003
Citation: Zhao Jinzhou, Liu Peng, Li Yongming, Mao Jincheng. The Properties of Non-Aqueous Fracturing Fluid with Low-Molecular Alkane Suitable for Shales[J]. Petroleum Drilling Techniques, 2015, 43(5): 15-19. DOI: 10.11911/syztjs.201505003

The Properties of Non-Aqueous Fracturing Fluid with Low-Molecular Alkane Suitable for Shales

More Information
  • Received Date: July 14, 2015
  • Revised Date: August 22, 2015
  • During the fracturing stimulation of unconventional oil and gas reservoirs (e.g. shale gas), various challenges are encountered, including the large amount of water consumption, difficult disposal of flow-back waste fluid and formation/reservoir damage. It is meaningful to explore a new non-aqueous fracturing technology to replace the traditional hydraulic fracturing technology for development and production of unconventional oil and gas reservoirs. The dialkyl phosphate gelling agent was formed through the reaction among phosphorus pentoxide (P2O5), triethyl phosphate (TEP) and mixed alcohols, it was mixed with a modified complex iron crosslinking agent in the low-carbon alkane to produce the low-molecular alkane non-aqueous fracturing fluid. By analyzing its basic performance and rheological property,the result showed that the fracturing fluid gel was prepared by the crosslinking ratio 100.0:3.5 and gelling agent mass fraction 1.5%), which can meet the requirements of reservoir fracturing operations with good temperature resistance, shear resistance and proppant carrying capacity.The viscous elasticity and shear thinning capacity of crosslinking gel tend to vary with the mass fraction of gelling agent, with obvious regularity. The rheological curves of the low-molecular alkane fracturing fluid can be characterized by the non-linear co-rotational Jeffreys constitutive equation, which provides the theoretical basis for the new fracturing fluid.
  • [1]
    葛洪魁,王小琼,张义.大幅度降低页岩气开发成本的技术途径[J].石油钻探技术,2013,41(6):1-5. Ge Hongkui,Wang Xiaoqiong,Zhang Yi.A technical approach to reduce shale gas development cost[J].Petroleum Drilling Techniques,2013,41(6):1-5.
    [2]
    刘鹏,赵金洲,李勇明,等.碳烃无水压裂液研究进展[J].断块油气田,2015,22(2):254-257. Liu Peng,Zhao Jinzhou,Li Yongming,et al.Advance in hydrocarbon waterless fracturing fluid[J].Fault-Block Oil Gas Field,2015,22(2):254-257.
    [3]
    孙张涛,吴西顺.页岩气开采中的水力压裂与无水压裂技术[J].国土资源情报,2014(5):51-55. Sun Zhangtao,Wu Xishun.Review on hydraulic fracturing and non-aqueous fracturing in shale gas development[J].Land and Resources Information,2014(5):51-55.
    [4]
    Lestz R S,Wilson L,Taylor R S,et al.Liquid petroleum gas fracturing fluids for unconventional gas reservoirs[J].Journal of Canadian Petroleum Technology,2007,46(12):68-72.
    [5]
    Tudor E H,Nevison G W,Allen S,et al.100% gelled LPG fracturing process:an alternative to conventional water-based fracturing techniques[R].SPE 124495,2009.
    [6]
    Leblanc D P,Martel T,Graves D G,et al.Application of propane (LPG) based hydraulic fracturing in the McCully Gas Field New Brunswick Canada[R].SPE 144093,2011.
    [7]
    李庆辉,陈勉,金衍,等.新型压裂技术在页岩气开发中的应用[J].特种油气藏,2012,19(6):1-7. Li Qinghui,Chen Mian,Jin Yan,et al.Application of new fracturing technologies in shale gas development[J].Special Oil Gas Reservoirs,2012,19(6):1-7.
    [8]
    许春宝,何春明.非常规压裂液发展现状及展望[J].精细石油化工进展,2012,13(6):1-5. Xu Chunbao,He Chunming.Status quo and prospect of unconventional fracturing fluids development[J].Advances in Fine Petrochemicals,2012,13(6):1-5.
    [9]
    范志坤,任韶然,张亮,等.LPG压裂工艺在超低渗储层中的应用[J].特种油气藏,2013,20(2):142-145. Fan Zhikun,Ren Shaoran,Zhang Liang,et al.Application of LPG fracturing technology in ultralow permeability reservoirs[J].Special Oil Gas Reservoirs,2013,20(2):142-145.
    [10]
    侯向前,卢拥军,方波,等.非常规储集层低碳烃无水压裂液[J].石油勘探与开发,2013,40(5):601-605. Hou Xiangqian,Lu Yongjun,Fang Bo,et al.Waterless fracturing fluid with low carbon hydrocarbon as base fluid for unconventional reservoirs[J].Petroleum Exploration and Development,2013,40(5):601-605.
    [11]
    李萍,张国徽,夏代宽.华北某油田用油基压裂液的合成及性能研究[J].石油与天然气化工,2008,37(3):237-239,258. Li Ping,Zhang Guohui,Xia Daikuan.Research on synthesis and properties of oil-based fracturing fluid used in an oilfield in North China[J].Chemical Engineering of Oil and Gas,2008,37(3):237-239,258.
    [12]
    孔羽,井继哲,冯涵,等.油基压裂液用磷酸酯胶凝剂的室内合成[J].石油化工应用,2012,31(6):81-83,87. Kong Yu,Jing Jizhe,Feng Han,et al.Indoor synthesis of phosphate gellant in oil base fracturing fluid[J].Petrochemical Industry Application,2012,31(6):81-83,87.
    [13]
    Lawrence S C,Kalenchuk A C,Ranicar K,et al.Volatile phosphorus free gellants for hydrocarbon based fracturing systems[R].SPE 115481,2008.
    [14]
    王满学,何静,张文生.磷酸酯/Fe3+型油基冻胶压裂液性能研究[J].西南石油大学学报:自然科学版,2013,35(1):150-154. Wang Manxue,He Jing,Zhang Wensheng.Performance research of oil-based gelled fracture fluid based on the phosphoric acid ester and ferric Iron[J].Journal of Southwest Petroleum University:Science Technology Edition,2013,35(1):150-154.
    [15]
    方波,姜舟,卢拥军,等.低聚瓜胶压裂液体系流变性及其本构方程[J].天然气工业,2008,28(2):102-103,110. Fang Bo,Jiang Zhou,Lu Yongjun,et al.Rheological properties and constitutive equation of the oligomeric guar gum fracturing fluid system[J].Natural Gas Industry,2008,28(2):102-103,110.
    [16]
    程巍,方波,卢拥军,等.低分子量阳离子瓜胶凝胶体系的流变性[J].华东理工大学学报:自然科学版,2007,33(5):600-605. Cheng Wei,Fang Bo,Lu Yongjun,et al.Rheological properties of the low molecular weight cationic guar gum crosslinked gel systems[J].Journal of East China University of Science and Technology:Natural Science Edition,2007,33(5):600-605.
    [17]
    严芳芳,方波,卢拥军,等.有机锆交联AM/DMAM/AMPS三元聚合物流变动力学[J].化工学报,2014,65(11):4376-4382. Yan Fangfang,Fang Bo,Lu Yongjun,et al.Rheokinetics of organic zirconium crosslinked AM/DMAM/AMPS terpolymer[J].CIESC Journal,2014,65(11):4376-4382.
    [18]
    侯向前,卢拥军,方波,等.低碳烃无水压裂液体系及流变特性研究[J].油田化学,2014,31(3):348-352. Hou Xiangqian,Lu Yongjun,Fang Bo,et al.Low carbon hydrocarbon-based fracturing fluid systems and their rheological properties[J].Oilfield Chemistry,2014,31(3):348-352.
  • Related Articles

    [1]YANG Hai, YANG Bingxiang. Online Calibration Method for Rheological Parameters of Drilling Fluid[J]. Petroleum Drilling Techniques, 2024, 52(4): 57-65. DOI: 10.11911/syztjs.2024062
    [2]LIU Jinlu, LI Jun, HE Jutao, YANG Hongwei, LIU Gonghui, LI Hui. A Segmented Prediction Method for Fluid Density and Rheology During Managed Pressure Cementing Injection Stage[J]. Petroleum Drilling Techniques, 2024, 52(1): 45-53. DOI: 10.11911/syztjs.2024005
    [3]ZHAO Quanmin, LI Yan, LIU Haoya, HE Qingshui, TANG Wenquan. The Technology of SXJD-Ⅰ Type Low Damage Temporary Plugging Workover Fluid[J]. Petroleum Drilling Techniques, 2019, 47(2): 109-113. DOI: 10.11911/syztjs.2019046
    [4]YUAN Haiping, TAO Changzhou, GAO Yan, XIA Yulei. A Method to Improve the Accuracy of Friction Calculations for HPG Fracturing Fluid[J]. Petroleum Drilling Techniques, 2017, 45(5): 108-112. DOI: 10.11911/syztjs.201705019
    [5]XUE Wenjia. Synthesis and Properties of High Temperature Resistance and Environmental-Friendly Viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6): 67-73. DOI: 10.11911/syztjs.201606011
    [6]Liu Lihong, Wang Juanjuan, Gao Chunhua. Research and Application of a Multicomponent Modified Instant Guar Fracturing Fluid[J]. Petroleum Drilling Techniques, 2015, 43(3): 116-119. DOI: 10.11911/syztjs.201503021
    [7]Zhang Hao. Application of Aluminum-Amine Drilling Fluid in Well Xia 1031HF[J]. Petroleum Drilling Techniques, 2013, 41(2): 59-64. DOI: 10.3969/j.issn.1001-0890.2013.02.012
    [8]Liu Yanxue, Wang Baofeng, Liu Jiankun. Experimental Study on Water Sensitive Damage of Fracturing Fluid to Low Permeability Gas Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(1): 70-75. DOI: 10.3969/j.issn.1001-0890.2013.01.014
    [9]Hu Youlin, Wu Xiaoming, Yue Qiansheng, Liu Shujie. Laboratory Research on Deepwater GTL Synthetic-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2012, 40(6): 38-42. DOI: 10.3969/j.issn.1001-0890.2012.06.008
    [10]Zhao Hui, Dai Caili, Liang Li, Wang Xin, Zhao Fulin. Research on Nonionic Polyacrylamide Zirconium Gel Fracturing Fluids in Coalbed Methane Gas Wells[J]. Petroleum Drilling Techniques, 2012, 40(1): 64-68. DOI: 10.3969/j.issn.1001-0890.2012.01.013
  • Cited by

    Periodical cited type(9)

    1. 王彬,李琼玉,吕喜林,梁池,程晓伟,杨永朋. 无水改性乙二醇基速溶压裂液研制及应用. 油气井测试. 2024(05): 34-41 .
    2. 凃宏俊,周明,李彤彤. 自修复水凝胶的研究进展及油气田应用. 西南石油大学学报(自然科学版). 2023(01): 71-80 .
    3. 李源流,高兴军,侯浩,王延,弓虎军. 低碳烃无水压裂液体系构建及性能评价. 钻采工艺. 2023(01): 126-131 .
    4. 匡立新. 新型铝离子无水压裂液的制备及其性能. 石油地质与工程. 2022(01): 81-86 .
    5. 魏志毅,张金泽,公证,刘崧达,刘佳音,李家豪,范海明. 双烷基脲稠化烃基压裂液的制备及其流变特性. 中国石油大学学报(自然科学版). 2022(04): 123-129 .
    6. 蒋廷学,左罗,黄静. 少水压裂技术及展望. 石油钻探技术. 2020(05): 1-8 . 本站查看
    7. 王满学,何静,王永炜. 国内烃基无水压裂液技术研究与应用进展. 钻井液与完井液. 2018(06): 1-7 .
    8. 刘晨,王凯,耿艳宏,王泰超,周文胜,邱凌. 清洁压裂液破胶液驱油体系实验研究. 断块油气田. 2017(01): 96-100 .
    9. 王满学,何静,王永炜. 耐高温低碳烃无水压裂液室内研究. 石油钻探技术. 2017(04): 93-96 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (3712) PDF downloads (3276) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return