Lou Chenyang, Yao Xiao, He Deqing, Yu Sanyue, Han Yuanyuan, Zhang Pengwei. The Reinforcing Effect of Calcium-Based Whisker in High-Temperature Sand-Cement Mixtures[J]. Petroleum Drilling Techniques, 2015, 43(4): 91-95. DOI: 10.11911/syztjs.201504016
Citation: Lou Chenyang, Yao Xiao, He Deqing, Yu Sanyue, Han Yuanyuan, Zhang Pengwei. The Reinforcing Effect of Calcium-Based Whisker in High-Temperature Sand-Cement Mixtures[J]. Petroleum Drilling Techniques, 2015, 43(4): 91-95. DOI: 10.11911/syztjs.201504016

The Reinforcing Effect of Calcium-Based Whisker in High-Temperature Sand-Cement Mixtures

More Information
  • Received Date: September 23, 2014
  • Revised Date: June 07, 2015
  • To satisfy the requirement of high temperature mechanical properties of oil well cement in heavy oil production,the application of calcium-based whisker in oil well cement as well as in cement with silica sand at high temperatures was investigated. First, the reinforcing and toughening effect of calcium sulfate whisker (CSW) and self-made whiskers (GZWS and GZWL) at 80℃ on oil well cement rock was tested, and then on the base of it, respectively. Compressive of cement with silica sand mixed with 5% GZWL in dry-heat curing at 600℃ was studied as well. The result showed that CSW had no reinforcing and toughening effect on oil well cemented rock, while GZWS and GZWL had obvious reinforcing and toughening effects, and GZWL with greater length diameter ratio was superior to GZWS. With the increased application of GZWL, the compressive strength and impact toughness of oil well cement stone increased, too. When 5% was added, the compressive strengths of cement rocks 1, 3, 7 and 28 d were increased by 18.7%, 42.4%, 20.6% and 20.7% respectively, compared with neat paste. Impact toughness was increased by 6.8%, 7.0%, 12.8% and 13.0% in the curing age. The result of the high temperature experiment showed the compressive strength of cement with silica sand with 5% GZWL was more than twice the contrast. It was demonstrated that GZWL efficiently acts as a high temperature resistance reinforcing admixture. Furthermore, a whisker with hydrophilicity had a good reinforcing effect, and the greater the long diameter ratio of whisker, the higher the reinforcing effect.
  • [1]
    赵修太,付敏杰,王增宝,等.稠油热采调堵系研究进展综述[J].特种油气藏,2013,20(4):1-4. Zhao Xiutai,Fu Minjie,Wang Zengbao,et al.Research overview of profile control and water shut-off agents for heavy oil thermal recovery[J].Special Oil Gas Reservoirs,2013,20(4):1-4.
    [2]
    连经社,王树山.采油工艺[M].北京:中国石化出版社,2011:79. Lian Jingshe,Wang Shushan.Oil production technology[M].Beijing:China Petrochemical Press,2011:79.
    [3]
    李早元,郭小阳,杨远光,等.新型耐高温水泥用于热采井固井初探[J].西南石油大学学报,2001,23(4):29-32. Li Zaoyuan,Guo Xiaoyang,Yang Yuanguang,et al. Preliminary study of a new anti-high temperature cement used for thermal-recovery wells[J]. Journal of Southeast Petroleum Institute,2001,23(4):29-32.
    [4]
    蔡文斌,李友平,李淑兰.火烧油层技术在胜利油田的应用[J].石油钻探技术,2004,32(2):52-55. Cai Wenbin,Li Youping,Li Shulan. Applications of combustion drive in Shengli Oilfield[J]. Petroleum Drilling Techniques,2004,32(2):52-55.
    [5]
    曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993:529-531. Zeng Hanmin. Survey of high-tech new materials[M]. Beijing:China Science and Technology Press,1993:529-531.
    [6]
    冯端.固体物理学大辞典[M].北京:高等教育出版社,1995:583. Feng Duan. A grand dictionary of solid state physics[M]. Beijing:High Education Press,1995:583.
    [7]
    徐兆瑜.晶须的研究和应用新进展[J].化工技术与开发,2005,34(2):11-17. Xu Zhaoyu.Research progress of whisker and its application[J].Technology Development of Chemical Industry,2005,34(2):11-17.
    [8]
    API SPEC10—1999 Specificiation for materials and testing for oil well cements[S].
    [9]
    GB/T 1346—2001 水泥标准稠度用水量、凝结时间、安定性检验方法[S]. GB/T 1346—2001 Test methods for water requirement of normal consistency,setting time and soundness of the portland cement[S].
    [10]
    庞强特.关于混凝土干热养护机理的讨论:二[J].混凝土及建筑构件,1980(1):38-42. Pang Qiangte.Theoretical study of dry-heat curing mechanism of concrete:second part[J].Concret and Architectural Component,1980(1):38-42.
    [11]
    冶金工业部建筑研究院情报组.国外预制厂加速混凝土硬化的热养护方法发展概况[J].建筑技术,1978(5):72-79. Information Organization of Research Institute of Construction of Ministry of Metallurgical. Development of heat curing to accelerate hydration of concrete abroad[J]. Architecture Technology,1978(5):72-79.
    [12]
    北京市建筑工程研究所制品室.混凝土制品的干热养护[J].建筑技术,1978(5):50-52. Beijing Building Construction Research Institute.Dry-heat curing of precast concret[J].Architecture Technology,1978(5):50-52.
    [13]
    李武.无机晶须[M].北京:化学工业出版社,2005:68. Li Wu.Inorganic whisker[M].Beijing:Chemical Industry Press,2005:68.
    [14]
    张景富,徐明,闫占辉,等.高温条件下G级油井水泥原浆及加砂水泥的水化和硬化[J].硅酸盐学报,2008,36(7):939-945. Zhang Jingfu,Xu Ming,Yan Zhanhui,et al. Hydration and hardened of class G oil well cement with and without silica sands under high temperatures[J]. Journal of the Chinese Ceramic Society,2008,36(7):939-945.
    [15]
    杨智光,崔海清,肖志兴.深井高温条件下油井水泥强度变化规律研究[J].石油学报,2008,29(3):435-437. Yang Zhiguang,Cui Haiqing,Xiao Zhixing. Change of cement stone strength in the deep high temperature oil well[J]. Acta Petrolei Sinica,2008,29(3):435-437.
    [16]
    Becher P F,Hsueh C H,Angelini P,et al. Toughening behavior in whisker-reinforced ceramic matrix composites[J]. Journal of the American Ceramic Society,1988,71(12):1050-1061.
    [17]
    Faber K T,Evans A G. Crack deflection processes:I:theory[J]. Acta Metallurgica,1983,31(83):565-576.
    [18]
    Mazdiyasn K S.Fiber reinforced ceramic composites materials[M]. Park Ridge:Noyes Publications,1990:324.
  • Related Articles

    [1]LI Ning, LIU Peng, FAN Huajun, HU Jiangtao, WU Hongliang. Evaluation Method of Downhole Multi-Scale Fracturing Effect Based on Array Acoustic Logging[J]. Petroleum Drilling Techniques, 2024, 52(1): 1-7. DOI: 10.11911/syztjs.2024001
    [2]YANG Chunhe, WANG Lei, ZENG Yijin, GUO Yintong, YANG Guangguo, LIU Kui. A Laboratory Method for Evaluating the Bonding Tensile Strength of the Cement–Formation Interface Considering Multiple Factors[J]. Petroleum Drilling Techniques, 2023, 51(4): 48-54. DOI: 10.11911/syztjs.2023041
    [3]WU Bailie, PENG Chengyong, WU Guang'ai, LOU Yishan, YIN Biao. Effect of Fracability Index on Fracture Propagation: A Case Study of LF Oilfield in South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(3): 105-112. DOI: 10.11911/syztjs.2023062
    [4]LIU Yaowen, BIAN Xiaobing, LI Shuangming, JIANG Tingxue, ZHANG Chi. An Evaluation Method of Shale Fracability Based on Stress Inversion[J]. Petroleum Drilling Techniques, 2022, 50(1): 82-88. DOI: 10.11911/syztjs.2021098
    [5]LIAO Yong, TAN Pan, SHI Wenrui, FENG Aiguo, HE Haoran. An Evaluation Method for Gas Production Property for Shale Gas Reservoirs in the Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(5): 69-75. DOI: 10.11911/syztjs.2018112
    [6]WANG Hanqing, CHEN Junbin, ZHANG Jie, XIE Qing, WEI Bo, ZHAO Yiran. A New Method of Fracability Evaluation of Shale Gas Reservoir Based on Weight Allocation[J]. Petroleum Drilling Techniques, 2016, 44(3): 88-94. DOI: 10.11911/syztjs.201603016
    [7]Bu Yuhuan, Song Wenyu, He Yingjun, Shen Zhaochao. Discussion of a Method for Evaluating Cementing Quality with Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49-55. DOI: 10.11911/syztjs.201505009
    [8]Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007
    [9]Zhang Xinhua, Zou Xiaochun, Zhao Hongyan, Li Fang, Qin Liming. A New Method of Evaluation Shale Brittleness Using X-ray Fluorescence Element Logging Data[J]. Petroleum Drilling Techniques, 2012, 40(5): 92-95. DOI: 10.3969/j.issn.1001-0890.2012.05.020
    [10]Discussion of Evaluation Method of Cementing Flushing Efficiency[J]. Petroleum Drilling Techniques, 2011, 39(2): 77-80. DOI: 10.3969/j.issn.1001-0890.2011.02.015
  • Cited by

    Periodical cited type(58)

    1. 丁琳,傅筱涵,李晓艳,李小平,靳子濠,王宇辰,吴琼玲,杨佳颖,远光辉. 珠江口盆地深层低渗储层成岩相及可压裂性分析——以惠州-陆丰地区文昌组为例. 中国海上油气. 2025(01): 26-38 .
    2. 蒋艳芳. 大牛地气田DK13井区碳酸盐岩储层地质工程甜点评价. 天然气技术与经济. 2025(01): 1-5+19 .
    3. 邹清腾,曹博文,王永红,陈钊,舒东楚,尚立涛,侯腾飞. 考虑压裂诱导效应的页岩储层工程可压裂性评价. 大庆石油地质与开发. 2024(06): 155-162 .
    4. 李志明,孙中良,黎茂稳,曹婷婷,李政,刘鹏,蒋启贵,钱门辉,陶国亮. 济阳坳陷第一轮页岩油探井“失利”原因剖析. 地球科学. 2023(01): 143-157 .
    5. 朱海燕,龚丁,张兵. 致密砂岩气储层多尺度“地质-工程”双甜点评价新方法. 天然气工业. 2023(06): 76-86 .
    6. 吴百烈,彭成勇,武广瑷,楼一珊,尹彪. 可压性指数对压裂裂缝扩展规律的影响研究——以南海LF油田为例. 石油钻探技术. 2023(03): 105-112 . 本站查看
    7. 任岚,李逸博,彭思瑞,赵超能,吴建发,李真祥. 基于综合可压性的深层页岩气压裂经济效益预测方法. 石油钻采工艺. 2023(02): 229-236 .
    8. 刘合,孟思炜,王素玲,董康兴,杨柳,陶嘉平,梁立豪. 古龙页岩力学特征与裂缝扩展机理. 石油与天然气地质. 2023(04): 820-828 .
    9. 李志明,刘雅慧,何晋译,孙中良,冷筠滢,李楚雄,贾梦瑶,徐二社,刘鹏,黎茂稳,曹婷婷,钱门辉,朱峰. 陆相页岩油“甜点”段评价关键参数界限探讨. 石油与天然气地质. 2023(06): 1453-1467 .
    10. 刘尧文,卞晓冰,李双明,蒋廷学,张驰. 基于应力反演的页岩可压性评价方法. 石油钻探技术. 2022(01): 82-88 . 本站查看
    11. 郭大立,张书玲,王璇,甄怀宾,王成旺. 基于动态权函数的煤层可压性综合评价. 西南石油大学学报(自然科学版). 2022(02): 97-104 .
    12. 刘双莲. 页岩气“双甜点”参数测井评价方法. 石油与天然气地质. 2022(04): 1005-1012 .
    13. 郭旭升,胡德高,舒志国,李宇平,郑爱维,魏祥峰,倪凯,赵培荣. 重庆涪陵国家级页岩气示范区勘探开发建设进展与展望. 天然气工业. 2022(08): 14-23 .
    14. 蒋廷学,路保平,左罗,卞晓冰. 页岩气地质—工程可压度评价方法研究及应用. 天然气与石油. 2022(04): 68-74 .
    15. 李阳,赵清民,吕琦,薛兆杰,曹小朋,刘祖鹏. 中国陆相页岩油开发评价技术与实践. 石油勘探与开发. 2022(05): 955-964 .
    16. 杨振恒,陶国亮,鲍云杰,卢龙飞,孙永革,刘伟新,申宝剑,聂海宽. 南方海相深层页岩气储集空间差异化发育及保持机理探讨. 石油实验地质. 2022(05): 845-853+865 .
    17. LI Yang,ZHAO Qingmin,LYU Qi,XUE Zhaojie,CAO Xiaopeng,LIU Zupeng. Evaluation technology and practice of continental shale oil development in China. Petroleum Exploration and Development. 2022(05): 1098-1109 .
    18. 王贤君,肖丹凤,魏宇,吴浩兵. 海拉尔盆地塔木兰沟组储层可压性评价. 石油地质与工程. 2022(05): 106-110+114 .
    19. 钟亚军,罗攀,张磊,刘银山. 页岩气水平井体积压裂分段分簇方法研究. 石油化工应用. 2022(09): 31-34 .
    20. 蒋廷学,卞晓冰,左罗,沈子齐,刘建坤,吴春方. 非常规油气藏体积压裂全生命周期地质工程一体化技术. 油气藏评价与开发. 2021(03): 297-304+339 .
    21. 刘建坤,蒋廷学,卞晓冰,苏瑗,刘世华,魏娟明. 常压页岩气低成本高效压裂技术对策. 钻井液与完井液. 2020(03): 377-383 .
    22. 王小军,梁利喜,赵龙,刘向君,秦志军,李玮. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价. 石油与天然气地质. 2019(03): 661-668 .
    23. 苏瑗,蒋廷学,卞晓冰,周珺. 一种页岩气井压后评估的远井可压指数评价方法. 石油化工应用. 2019(05): 43-48 .
    24. 付利,申瑞臣,庞飞,杨恒林,陈科. 页岩剪切摩擦与非稳态滑移特性实验. 地球科学. 2019(11): 3783-3793 .
    25. 高辉,张晓,何梦卿,徐创朝,窦亮彬,朱耿博仑,李宇. 基于测井数据体的页岩油储层可压裂性评价研究. 地球物理学进展. 2018(02): 603-612 .
    26. 姚军,黄朝琴,刘文政,张玉,曾青冬,严侠. 深层油气藏开发中的关键力学问题. 中国科学:物理学 力学 天文学. 2018(04): 5-31 .
    27. 石文睿,冯爱国,陈四平,谭判. 一种描述页岩储层可压性的简易评价方法. 江汉石油职工大学学报. 2018(04): 38-41 .
    28. 杨恒林,张俊杰,王高成,付利,孙清华,田中兰. 四川威远及云南昭通区块龙马溪组优质页岩组构差异性与矿物纳米力学特征. 天然气勘探与开发. 2018(01): 16-22 .
    29. 赖富强,罗涵,覃栋优,夏炜旭,龚大建. 基于层次分析法的页岩气储层可压裂性评价研究. 特种油气藏. 2018(03): 154-159 .
    30. 翟文宝,李军,周英操,柳贡慧,黄涛,宋学锋. 基于测井资料的页岩储层可压裂性评价新方法. 岩性油气藏. 2018(03): 112-123 .
    31. 熊周海,操应长,王冠民,杨振,石晓明,张健,张婕,张宝,李佳伟. 湖相细粒沉积岩成分对可压裂性的控制作用. 中国矿业大学学报. 2018(03): 538-548+578 .
    32. 张驰. 涪陵页岩气田平桥区块深层气井压裂工艺优化与应用. 岩性油气藏. 2018(06): 160-168 .
    33. 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望. 石油钻探技术. 2018(01): 1-9 . 本站查看
    34. 刘坤,孙建孟,陈心宇. 水平井致密油储层近井和远井可压性研究. 测井技术. 2017(04): 443-447 .
    35. 徐春碧,肖晖,杨德普,巴悦. 利用综合甜点对YDN地区龙马溪组页岩储层进行可压性评价. 重庆科技学院学报(自然科学版). 2017(06): 1-4 .
    36. 王恩博,徐春碧,肖晖,王泽中. 龙马溪组页岩可压性实验评价. 重庆科技学院学报(自然科学版). 2017(06): 5-7 .
    37. 肖佳林,李远照,候振坤,郭印同,王磊. 一种页岩储层脆性评价方法. 断块油气田. 2017(04): 486-489 .
    38. 王海涛,蒋廷学. 一种页岩气远井地层可压性简易评价方法及其应用. 科学技术与工程. 2017(15): 202-206 .
    39. 刘坤,孙建孟,王艳. 致密油储层水平井压后产能预测研究. 科学技术与工程. 2017(29): 88-95 .
    40. 刘晓,张帆,马耕,苏现波. 煤岩缝网改造关键因素分析及应用研究. 煤炭科学技术. 2017(06): 85-89+169 .
    41. 何泽轩. 水力压裂裂缝启裂扩展数值模拟. 石油化工应用. 2017(08): 58-61 .
    42. 何泽轩. 页岩储层水力压裂裂缝相互作用数值模拟研究. 石油化工应用. 2017(09): 43-45+50 .
    43. 杨恒林,乔磊,田中兰. 页岩气储层工程地质力学一体化技术进展与探讨. 石油钻探技术. 2017(02): 25-31 . 本站查看
    44. 周顺林,尹帅,王凤琴,李东,易旺. 应力对泥页岩储层脆性影响的试验分析及应用. 石油钻探技术. 2017(03): 113-120 . 本站查看
    45. 冯国强,赵立强,卞晓冰,蒋廷学,王步娥,侯磊. 深层页岩气水平井多尺度裂缝压裂技术. 石油钻探技术. 2017(06): 77-82 . 本站查看
    46. 王濡岳,龚大建,丁文龙,冷济高,尹帅,王兴华,孙雅雄. 上扬子地区下寒武统牛蹄塘组页岩储层脆性评价:以贵州岑巩区块为例. 地学前缘. 2016(01): 87-95 .
    47. 梁榜. 涪陵焦石坝页岩气初期产能主控因素研究. 江汉石油科技. 2016(04): 1-5 .
    48. 梁榜,卢文涛,曾勇,刘霜,张谦. 涪陵焦石坝页岩气初期产能主控因素研究. 江汉石油职工大学学报. 2016(05): 1-4 .
    49. 康毅力,佘继平,林冲,游利军. 钻井完井液浸泡弱化页岩脆性机制. 力学学报. 2016(03): 730-738 .
    50. 侯振坤,杨春和,魏翔,王磊,魏元龙,徐峰,汪虎. 龙马溪组页岩脆性特征试验研究. 煤炭学报. 2016(05): 1188-1196 .
    51. 王汉青,陈军斌,张杰,谢青,魏波,赵逸然. 基于权重分配的页岩气储层可压性评价新方法. 石油钻探技术. 2016(03): 88-94 . 本站查看
    52. 卞晓冰,蒋延学,贾长贵,王海涛,李双明,苏瑗,卫然. 基于施工曲线的页岩气井压后评估新方法. 天然气工业. 2016(02): 60-65 .
    53. 王海涛,蒋廷学,李远照,卞晓冰,华继军. 页岩气水平井压裂分段分簇综合优化方法. 新疆石油地质. 2016(02): 218-221 .
    54. 王海涛,蒋廷学,卞晓冰,段华. 深层页岩压裂工艺优化与现场试验. 石油钻探技术. 2016(02): 76-81 . 本站查看
    55. 黄进,吴雷泽,游园,黄晓凯,聂彬,张辉. 涪陵页岩气水平井工程甜点评价与应用. 石油钻探技术. 2016(03): 16-20 . 本站查看
    56. 蒋廷学,卞晓冰. 页岩气储层评价新技术——甜度评价方法. 石油钻探技术. 2016(04): 1-6 . 本站查看
    57. 陈昀,金衍,陈勉. 基于能量耗散的岩石脆性评价方法. 力学学报. 2015(06): 984-993 .
    58. 陈勉,葛洪魁,赵金洲,姚军. 页岩油气高效开发的关键基础理论与挑战. 石油钻探技术. 2015(05): 7-14 . 本站查看

    Other cited types(55)

Catalog

    Article Metrics

    Article views (2883) PDF downloads (3996) Cited by(113)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return