Zhou Zhigang. Analysis and Field Testing by Remote Control of the Action of a Variable Diameter Stabilizer[J]. Petroleum Drilling Techniques, 2015, 43(3): 120-124. DOI: 10.11911/syztjs.201503022
Citation: Zhou Zhigang. Analysis and Field Testing by Remote Control of the Action of a Variable Diameter Stabilizer[J]. Petroleum Drilling Techniques, 2015, 43(3): 120-124. DOI: 10.11911/syztjs.201503022

Analysis and Field Testing by Remote Control of the Action of a Variable Diameter Stabilizer

More Information
  • Received Date: October 07, 2014
  • Revised Date: February 01, 2015
  • The remote-control variable diameter stabilizer developed is unreliable in the state signal,resulting in the fact that its state cannot be identified.In order to identify relevant factors affecting the state signal,the stabilizer action was analyzed for changing its diameter under both surface and downhole conditions based on the principle of liquid incompressibility and force equilibrium.Later,combined with its structural characteristics,the result of the analysis was partially verified by field test.The stabilizer can achieve state control by using well deviation signal from the MWD instrument and determine the working state by analyzing the pump pressure difference between two adjacent pump startups.The result of the analysis suggested that the upper and lower position limits of balance piston inside the stabilizer can reduce the action stroke for changing diameter.The field test showed that the state change of the stabilizer conforms to the changing regularity of controlling piston extension and alignment,the pump pressure on piston extension is higher than that of piston alignment,and the absolute difference of adjacent pump pressure is about 1.0 MPa.The working state of the stabilizer can be determined based on the pump pressure value of the second pump startup.The research results showed that,the upper and lower limits of the balance piston position inside the stabilizer would result in a weak state signal or no signal.The method to determine the stabilizer state according to pressure difference between two adjacent pump startups is reliable,and can provide the basis for remote control of stabilizer on the ground.
  • [1]
    Lawrence L,Stymiest J,Russell R.Adjustable-gauge stabilizer in motor provides greater inclination control[J].Oil Gas Journal,2002,100(7):37-41.
    [2]
    祝效华,刘少胡,聂荣国,等.KWQ-216型地面可控井下变径稳定器[J].石油钻采工艺,2011,33(1):120-122. Zhu Xiaohua,Liu Shaohu,Nie Rongguo,et al.KWQ-216 surface controlled downhole variable diameter stabilizer[J].Oil Drilling Production Technology,2011,33(1):120-122.
    [3]
    肖仕红,梁政.旋转导向钻井技术发展现状及展望[J].石油机械,2006,34(4):66-70. Xiao Shihong,Liang Zheng.Development status and prospect of the rotary steerable drilling technology[J].China Petroleum Machinery,2006,34(4):66-70.
    [4]
    张明江,彭新明.TRACS可调变径稳定器的使用情况[J].石油钻采工艺,1998,20(增刊1):52-59. Zhang Mingjiang,Peng Xinming.Application of TRACS adjustable stabilizer[J].Oil Drilling Production Technology,1998,20(supplement 1):52-59.
    [5]
    赵小充,金学智.可变径稳定器在定向钻井中的有效应用[J].国外石油机械,1996,7(4):14-18. Zhao Xiaochong,Jin Xuezhi.The effective application of the variable diameter stabilizer in directional drilling[J].Foreign Petroleum Machinery,1996,7(4):14-18.
    [6]
    巩同标.遥控变径稳定器在胜利油田钻井中的应用[J].石油钻探技术,2007,35(6):82-84. Gong Tongbiao.Application of remote controlled variable-gauge-stabilizer in Shengli Oilfield[J].Petroleum Drilling Techniques,2007,35(6):82-84.
    [7]
    刘英辉,苏义脑,汪海阁,等.井下机液控制变径稳定器的设计与改进[J].河南石油,2000,14(3):29-30,61. Liu Yinghui,Su Yinao,Wang Haige,et al.Design and improvement of downhole mechanical-hydraulic control variable diameter stabilizer[J].Henan Petroleum,2000,14(3):29-30,61.
    [8]
    林雅玲,马汝涛,任荣权.井下节流杆机构设计及其使用条件[J].石油机械,2013,41(8):76-80,93. Lin Yaling,Ma Rutao,Ren Rongquan.Design of downhole throttle lever mechanism and its service conditions[J].China Petroleum Machinery,2013,41(8):76-80,93.
  • Related Articles

    [1]FENG Yingtao, MA Rui, CUI Ce, ZHANG Fuming, WEN Dayang, ZHAO Jun. Cementing Technologies for Ultra-Deepwater Development Wells in Block X of the South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(3): 90-97. DOI: 10.11911/syztjs.2025057
    [2]ZHANG Weiguo, DI Mingli, LU Yunhu, ZHANG Jian, DU Xuan. Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103
    [3]LIU Zhengli, YAN De. Key Drilling Techniques of Liwan22-1-1 Ultra-Deepwater Well in East of South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 13-19. DOI: 10.11911/syztjs.2019026
    [4]LUO Ming, WU Jiang, CHEN Haodong, XIAO Ping. Ultra-High Temperature High Pressure Drilling Technology for Narrow Safety Density Window Strata in the Western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8-12. DOI: 10.11911/syztjs.2019024
    [5]XIANG Xiong, YANG Honglie, LIU Xiliang, YOU Fuchang, ZHOU Shanshan. Research and Application of EZFLOW Solid-Free Weak Gel Drilling Fluid in Horizontal Wells in Shallow Gas Fields in the Western South China Sea[J]. Petroleum Drilling Techniques, 2018, 46(2): 38-43. DOI: 10.11911/syztjs.2018024
    [6]LIN Siyuan, LI Zhong, HUANG Yi, CHEN Haodong, YANG Yuhao, GAO Jiji. Technique for Enhancing the Rate of Penetration through the Application of a New PDC Bit with Rotary Cutters in Deep Formations in the Wenchang Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 65-69. DOI: 10.11911/syztjs.201706012
    [7]XU Youfu, ZHANG Zhongqiang, FANG Hualiang. Well Control Technologies for HTHP Gas Wells in the C Block of the South China Sea[J]. Petroleum Drilling Techniques, 2017, 45(4): 21-26. DOI: 10.11911/syztjs.201704004
    [8]Zeng Chunmin, Wei Longgui, Zhang Chao, Zhang Chong, Liu Xianyu, Huang Liang. Casing Wear Prediction for HTHP Gas Wells in West of South China Sea Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(6): 46-53. DOI: 10.11911/syztjs.201506009
    [9]South China Sea Deepwater Drilling Challenges and Solutions[J]. Petroleum Drilling Techniques, 2011, 39(2): 50-55. DOI: 10.3969/j.issn.1001-0890.2011.02.009
    [10]“Twinhole Drilled at First Spudding” in Southwest China Sea Oilfield[J]. Petroleum Drilling Techniques, 2011, 39(1): 119-122. DOI: 10.3969/j.issn.1001-0890.2011.01.025
  • Cited by

    Periodical cited type(8)

    1. 刘智勤,徐加放,彭巍,徐超,于晓东. 陵水区块超深水高性能恒流变油基钻井液技术. 钻井液与完井液. 2024(02): 184-190 .
    2. 胡南丁,杨进,于辰,包苏都娜,周健一,王佳康,丁益达. 海上钻井表层导管表面摩擦力变化机理研究. 石油机械. 2022(01): 75-80 .
    3. 熊亮,谢文卫,张伟,于浩雨. 跟管钻进下套管技术在大洋钻探中的应用. 探矿工程(岩土钻掘工程). 2020(07): 16-22+35 .
    4. 王腾,何家龙,刘锦昆. 管土界面摩擦疲劳效应对深水井口导管贯入阻力的影响. 岩土工程学报. 2020(08): 1532-1539 .
    5. 邓玉明,刘正礼,赵维青,赵苏文. 南海深水钻井导管水下打桩可打性评估. 天然气与石油. 2020(06): 86-91 .
    6. 刘正礼,严德. 南海东部荔湾22–1–1超深水井钻井关键技术. 石油钻探技术. 2019(01): 13-19 . 本站查看
    7. 耿铁,邱正松,汤志川,赵欣,苗海龙. 深水钻井抗高温强抑制水基钻井液研制与应用. 石油钻探技术. 2019(03): 82-88 . 本站查看
    8. 张俊成,李忠慧,彭昊,胡尹凌,李志强. 深水环境下钻井面临的难点与解决对策. 山东化工. 2018(14): 104-107 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (3274) PDF downloads (3957) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return