SHI Peiming, NI Huafeng, HE Huifeng, et al. Key technologies for safe drilling in horizontal section of deep coal rock gas horizontal well in Ordos Basin [J]. Petroleum Drilling Techniques, 2025, 53(1):17−23. DOI: 10.11911/syztjs.2024112
Citation: SHI Peiming, NI Huafeng, HE Huifeng, et al. Key technologies for safe drilling in horizontal section of deep coal rock gas horizontal well in Ordos Basin [J]. Petroleum Drilling Techniques, 2025, 53(1):17−23. DOI: 10.11911/syztjs.2024112

Key Technologies for Safe Drilling in Horizontal Section of Deep Coal Rock Gas Horizontal Well in Ordos Basin

More Information
  • Received Date: August 09, 2023
  • Revised Date: November 17, 2024
  • Available Online: December 03, 2024
  • In the target layer of the deep coal rock gas horizontal well in the eastern gas field of Ordos Basin, the 8# coal seam of the Benxi Formation is deeply buried and has strong heterogeneity. During the drilling process, there are technical difficulties such as low rate of penetration (ROP), easy instability and collapse of the wellbore, complex and frequent downhole faults, difficult extension of the horizontal section, and challenging completion casing running. Therefore, on the basis of analyzing the characteristics of the 8# coal seam of the Benxi Formation and technical difficulties during drilling, the optimization of high-efficiency PDC bit and speed-up tool for reverse reaming, optimization of steering drilling tool assembly without stabilizer for sticking prevention, fine steering trajectory control technology for horizontal sections, rotary casing running technology, and micro-nano strong inhibition of high-efficiency water-based drilling fluid system technology were conducted, and key technologies for safe drilling in horizontal sections of deep coal rock gas horizontal wells in Ordos Basin were developed. The technologies were applied to 10 deep coal rock gas horizontal wells in the Suide–Mizhi Block of the eastern gas field of Ordos Basin. No downhole faults such as wellbore instability occurred in the drilling process of horizontal sections, and the wells were successfully drilled to the designed completion depth. The casing was smoothly run to the designed position, with an average ROP of 9.00 m/h, indicating a 48.51% increase compared with the adjacent Well NL1H without the technologies applied. Field applications show that the key technologies for safe drilling in horizontal sections of deep coal rock gas horizontal wells in Ordos Basin can overcome the technical difficulties in the drilling process of horizontal sections of deep coal rock gas horizontal wells in the eastern gas fields of the basin, improve the mechanical drilling rate of the horizontal sections and the drilling rate of the coal rock reservoir, and provide technical support for the development of deep coal rock gas in the basin.

  • [1]
    王维,韩金良,王玉斌,等. 大宁−吉县区块深层煤岩气水平井钻井技术[J]. 石油机械,2023,51(11):70–78.

    WANG Wei, HAN Jinliang, WANG Yubin, et al. Drilling technology for deep coal rock gas horizontal wells in Da’ning-Jixian block[J]. China Petroleum Machinery, 2023, 51(11): 70–78.
    [2]
    张金平,倪华锋,史配铭. 鄂尔多斯盆地东部气田盐下高含硫储层安全高效钻井技术[J]. 石油钻探技术,2023,51(3):22–29. doi: 10.11911/syztjs.2023073

    ZHANG Jinping, NI Huafeng, SHI Peiming. Safe and efficient drilling in presalt high-sulfur reservoirs in the eastern gas fields of Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(3): 22–29. doi: 10.11911/syztjs.2023073
    [3]
    史配铭,李晓明,倪华峰,等. 苏里格气田水平井井身结构优化及钻井配套技术[J]. 石油钻探技术,2021,49(6):29–36. doi: 10.11911/syztjs.2021057

    SHI Peiming, LI Xiaoming, NI Huafeng, et al. Casing program optimization and drilling matching technologies for horizontal wells in Sulige Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(6): 29–36. doi: 10.11911/syztjs.2021057
    [4]
    史配铭,倪华峰,石崇东,等. 苏里格致密气藏超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2022,50(1):13–21. doi: 10.11911/syztjs.2021056

    SHI Peiming, NI Huafeng, SHI Chongdong, et al. Key technologies for drilling and completing horizontal wells with ultra-long horizontal sections in the Sulige tight gas reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 13–21. doi: 10.11911/syztjs.2021056
    [5]
    李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. doi: 10.11911/syztjs.2020002

    LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6–11. doi: 10.11911/syztjs.2020002
    [6]
    王春生,冯少波,张志,等. 深地塔科 1 井钻井设计关键技术[J]. 石油钻探技术,2024,52(2):78–86.

    WANG Chunsheng, FENG Shaobo, ZHANG Zhi, et al. Key technologies for drilling design of Well Shendi Take-1[J]. Petroleum Drilling Techniques, 2024, 52(2): 78–86.
    [7]
    李磊,杨进,刘宝生,等. 渤海渤中区域深井井身结构优化[J]. 石油钻采工艺,2020,42(5):569–572.

    LI Lei, YANG Jin, LIU Baosheng, et al. Casing program optimization of deep wells in the central Bohai Area[J]. Oil Drilling & Production Technology, 2020, 42(5): 569–572.
    [8]
    倪华峰. 陕224区块储气库水平井钻完井关键技术优化[J]. 石油钻采工艺,2023,45(1):31–37.

    NI Huafeng. Optimization on key technologies for drilling and completion of horizontal wells in gas storage in Shan 224 Block[J]. Oil Drilling & Production Technology, 2023, 45(1): 31–37.
    [9]
    王虎,迟焕鹏,王胜建,等. 黔西地区石炭系页岩气钻井工程难点与对策[J]. 断块油气田,2024,31(5):909–915.

    WANG Hu, CHI Huanpeng, WANG Shengjian, et al. Difficulties and countermeasures of Carboniferous shale gas drilling engineering in western Guizhou[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 909–915.
    [10]
    刘宝生,徐鲲,李文龙,等. 渤海秦皇岛27-3区块探井快速钻井关键技术[J]. 中国海上油气,2024,36(4):153–160.

    LIU Baosheng, XU Kun, LI Wenlong, et al. Key technologies for rapid drilling of exploration well in QHD27-3 block in Bohai Sea[J]. China Offshore Oil and Gas, 2024, 36(4): 153–160.
    [11]
    刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田,2023,30(4):692–697.

    LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei Oil-Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 692–697.
    [12]
    孙家祥,赵洪山,马莉. 准噶尔盆地征 10 井超深井钻井关键技术[J]. 石油机械,2023,51(5):17–24.

    SUN Jiaxiang, ZHAO Hongshan, MA Li. Key drilling technologies for ultra-deep well zheng 10 in Junggar Basin[J]. China Petroleum Machinery, 2023, 51(5): 17–24.
    [13]
    高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20–34. doi: 10.11911/syztjs.2023022

    GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques, 2023, 51(4): 20–34. doi: 10.11911/syztjs.2023022
    [14]
    荣准,邓旭,张琦,等. 川东北高磨砂岩地层高效PDC钻头个性化设计:以五宝场沙溪庙地层为例[J]. 钻采工艺,2022,45(4):32–37.

    RONG Zhun, DENG Xu, ZHANG Qi, et al. Personalized design of efficient PDC bit for highly abrasive sandstone formation in northeast Sichuan Basin: a case study of Shaximiao Formation in Wubaochang Block[J]. Drilling & Production Technology, 2022, 45(4): 32–37.
    [15]
    刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺,2019,41(2):130–136.

    LIU Biao, PAN Lijuan, WANG Shengming, et al. Casing program optimization and application of ultradeep wells in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2019, 41(2): 130–136.
    [16]
    高航献,李真祥,胡彦峰. 元深1井超深井钻井提速关键技术[J]. 石油钻探技术,2024,52(3):28–33. doi: 10.11911/syztjs.2024054

    GAO Hangxian, LI Zhenxiang, HU Yanfeng. Key drilling technologies for increasing ROP in ultra-deep Well Yuanshen 1[J]. Petroleum Drilling Techniques, 2024, 52(3): 28–33. doi: 10.11911/syztjs.2024054
    [17]
    李基伟,李乾,田胜雷,等. 东海深部高研磨地层冲击钻井PDC齿优选研究[J]. 石油机械,2024,52(8):77–84.

    Li Jiwei, Li Qian, Tian Shenglei, et al. Optimization of PDC cutter for percussive drilling in deep highly-abrasive strata in the East China Sea Basin[J]. China Petroleum Machinery, 2024, 52(8): 77–84.
    [18]
    盖京明,李玮,刘刚军,等. 定向双齿结构对PDC钻头破岩效率及侧向力的影响[J]. 特种油气藏,2023,30(5):158–165.

    GAI Jingming, LI Wei, LIU Cangjun, et al. Eflect of directional double-tooth structure on rock-breaking effciency and lateral force of PDC drill bit[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 158–165.
    [19]
    臧艳彬. 川东南地区深层页岩气钻井关键技术[J]. 石油钻探技术,2018,46(3):7–12. doi: 10.11911/syztjs.2018073

    ZANG Yanbin. Key drilling technology for deep shale gas reservoirs in the Southeastern Sichuan Region[J]. Petroleum Drilling Techniques, 2018, 46(3): 7–12. doi: 10.11911/syztjs.2018073
    [20]
    王建龙,冯冠雄,刘学松,等. 长宁页岩气超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2020,48(5):9–14. doi: 10.11911/syztjs.2020086

    WANG Jianlong, FENG Guanxiong, LIU Xuesong, et al. Key technology for drilling and completion of shale gas horizontal wells with ultra-long horizontal sections in Changning Block[J]. Petroleum Drilling Techniques, 2020, 48(5): 9–14. doi: 10.11911/syztjs.2020086
    [21]
    崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术[J]. 石油钻探技术,2021,49(2):9–13. doi: 10.11911/syztjs.2020123

    CUI Yueming, SHI Haimin, ZHANG Qing. Optimized drilling and completion technology for horizontal wells in tight oil reservoirs in the Jilin Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 9–13. doi: 10.11911/syztjs.2020123
    [22]
    朱海燕,龚丁,张兵. 致密砂岩气储层多尺度“地质—工程”双甜点评价新方法[J]. 天然气工业,2023,43(6):76–86.

    ZHU Haiyan, GONG Ding, ZHANG Bing. A multi-scale geology-engineering sweet spot evaluation method for tight sandstone gas reservoirs[J]. Natural Gas Industry, 2023, 43(6): 76-86, 2023, 43(6): 76–86.
    [23]
    马英文,杨进,李文龙,等. 渤中26-6油田发现井钻井设计与施工[J]. 石油钻探技术,2023,51(3):9–15. doi: 10.11911/syztjs.2023075

    MA Yingwen, YANG Jin, LI Wenlong, et al. Drilling design and construction of a discovery well in Bozhong 26-6 Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 9–15. doi: 10.11911/syztjs.2023075
    [24]
    李玉枝,刘纯仁. 川西中层水平井轨迹优化控制技术[J]. 复杂油气藏,2023,16(4):472–478.

    LI Yuzhi, LIU Chunren. Trajectory optimization control technology of middle horizontal well in Western Sichuan[J]. Complex Hydrocarbon Reservoirs, 2023, 16(4): 472–478.
    [25]
    袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87. doi: 10.11911/syztjs.2023030

    YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87. doi: 10.11911/syztjs.2023030
    [26]
    王春伟,杜焕福,董佑桓,等. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索[J]. 断块油气田,2024,31(3):424–431.

    WANG Chunwei, DU Huanfu, DONG Youhuan, et al. Exploration of “directing , logging , mud-logging , steering” integration model while drilling for shale oil horizontal wells in Biyang Depression[J]. Fault-Block Oil & Gas Field, 2024, 31(3): 424–431.
    [27]
    邓钧耀,刘奕杉,乔磊,等. 保德煤层气田黄河压覆区长水平段水平井钻井完井技术[J]. 石油钻探技术,2021,49(2):37–41. doi: 10.11911/syztjs.2020124

    DENG Junyao, LIU Yisha, QIAO Lei, et al. Drilling and completion technology of horizontal wells with long horizontal section in the Yellow River overlay area of the Baode coalbed methane field[J]. Petroleum Drilling Techniques, 2021, 49(2): 37–41. doi: 10.11911/syztjs.2020124
    [28]
    王在明,陈金霞,沈园园,等. JN1H井煤岩气长水平段钻井井壁稳定技术[J]. 钻井液与完井液,2023,40(3):356–362. doi: 10.12358/j.issn.1001-5620.2023.03.011

    WANG Zaiming, CHEN Jinxia, SHEN Yuanyuan, et al. Borehole wall stabilization technology for drilling the long horizontal section coal rock gas Well JN1H[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 356–362. doi: 10.12358/j.issn.1001-5620.2023.03.011
    [29]
    李红伟,张斌. 织金区块浅层煤层气J形大位移水平井钻井技术[J]. 石油钻探技术,2016,44(2):46–50. doi: 10.11911/syztjs.201602008

    LI Hongwei, ZHANG Bin. Drilling techniques in J-shaped extended reach horizontal wells in shallow coal bed methane reservoirs in the Zhijin Block[J]. Petroleum Drilling Techniques, 2016, 44(2): 46–50. doi: 10.11911/syztjs.201602008
  • Related Articles

    [1]QIN Jianyu, LI Bo, RAO Zhihua, JIN Yong, ZHANG Yong, LIU Yongfeng. Key Cementing Technologies for an Ultra-Deep Extended Reach Well in Enping 21–4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 30-37. DOI: 10.11911/syztjs.2025026
    [2]YI Ming, DAI Yong, YANG Huanqiang, NAN Yadong, JI Mengjia, MEI Yuntao. Wellbore Pressure Control Technologies while Running Managed Pressure Casing with Negative Pressure Window[J]. Petroleum Drilling Techniques, 2024, 52(1): 17-25. DOI: 10.11911/syztjs.2023106
    [3]ZHANG Xinliang, JIN Lei, ZHANG Rui, ZHANG Guanlin, FENG Liying. Key Technologies for Casing Running with Double Floating Collars in Middle and Deep Horizontal Wells[J]. Petroleum Drilling Techniques, 2023, 51(6): 57-63. DOI: 10.11911/syztjs.2023053
    [4]SHI Peiming, LI Xiaoming, NI Huafeng, SHI Chongdong, JIANG Qingbo, CHENG Hualin. Casing Program Optimization and Drilling Matching Technologies for Horizontal Wells in Sulige Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(6): 29-36. DOI: 10.11911/syztjs.2021057
    [5]CHEN Xinyong, XU Minglei, MA Ying, XU Yaping, ZHAO Bo, HAN Xu. Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010
    [6]HU Daliang, OU Biao, HE Long, XIAO Guoyi, LI Wensheng, TANG Yuxiang. Casing Program Optimization and Drilling Matching Technologies for Marine Ultra-Deep Highly Deviated Wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 22-28. DOI: 10.11911/syztjs.2020053
    [7]LIN Siyuan, ZHANG Jie, HAN Cheng, HU Jie, TIAN Zongqiang, ZHENG Haopeng. Key Technology for Horizontal Well of Extended Reach Drilling in the Shallow Reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17-21. DOI: 10.11911/syztjs.2019105
    [8]WANG Bo, WANG Xu, XING Zhiqian, YUAN Zongling, LI Shijie. Drilling and Completion Technologies of Extended-Reach Wells in the Artificial Island of the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 42-46. DOI: 10.11911/syztjs.2018118
    [9]Liang Erguo, Li Zifeng, Wang Changjin, Han Dongying. Casing Abrasion Prediction for Deep and Extended Reach Wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.02.013
    [10]Chen Shu, Zhang Wenhua, Wang Lei, Li Wanjun, Yang Guobin. Casing Running Technology for High Horizontal-Displacement to Vertical-Depth Ratio 3D Shallow Layer Horizontal Well in Venezuela[J]. Petroleum Drilling Techniques, 2013, 41(1): 56-60. DOI: 10.3969/j.issn.1001-0890.2013.01.011
  • Cited by

    Periodical cited type(47)

    1. 申金伟,郭布民,陈玲,赵健,张康,潘江浩,豆连营,李栓,许田鹏. 鄂尔多斯盆地东缘深煤层用一体化变黏压裂液研究及应用. 山东化工. 2024(12): 186-188 .
    2. 冯奇,蒋官澄,张朔,黄胜铭,王全得,王文卓. 滑溜水压裂液用超疏水型多功能减阻剂制备及应用. 钻井液与完井液. 2024(03): 405-413 .
    3. 程长坤,张成娟,赵文凯,王志晟,隋国杰,刘欢. 多效变黏滑溜水稠化剂制备与性能评价. 精细石油化工. 2023(03): 12-17 .
    4. 赵伟,杨永,尹崇烈. 页岩气EDR-1滑溜水压裂液开发与现场应用. 石油工业技术监督. 2023(05): 58-62+68 .
    5. 许可,高航,石阳,刘臣,赖建林,葛婧楠,王皓霁. 储层改造用滑溜水压裂液性能研究进展. 应用化工. 2023(05): 1519-1524 .
    6. 葛欣. 新型一体化缔合压裂液性能分析与应用评价. 中外能源. 2023(08): 58-62 .
    7. 李宪文,徐晓晨,王文雄,胡子见,古永红,叶亮,马利静. 超低渗储层压裂液返排特性及组成变化研究. 工程热物理学报. 2023(08): 2153-2160 .
    8. 范克明,尚宏志,杜辉,朱文波,裴涛. 压裂返排液对不携砂滑溜水压裂液性能影响研究. 采油工程. 2022(01): 25-29+83 .
    9. 袁冬,卢刚,杜林. 一体化可变黏滑溜水在川西致密气井的先导试验. 石油化工应用. 2022(05): 51-55 .
    10. 魏娟明. 滑溜水–胶液一体化压裂液研究与应用. 石油钻探技术. 2022(03): 112-118 . 本站查看
    11. 薛新茹,李艳琦,孙铭辰. 聚丙烯酰胺类乳液型降阻剂的研制与应用. 精细石油化工. 2022(04): 23-26 .
    12. 刘晓瑞,刘利锋,傅鹏,李小玲,石华强,张雯娟. 抗盐速溶型减阻剂的制备及性能评价. 精细石油化工. 2022(04): 31-35 .
    13. 麦尔耶姆古丽·安外尔,蒲迪,翟怀建,刘宽,邬国栋,余波,金诚. 悬浮液基高效减阻携砂压裂液的研发与应用. 油田化学. 2022(03): 387-392+400 .
    14. 徐太平,李栓,周京伟,袁发明. 滑溜水压裂液用乳液降阻剂的合成及应用. 精细石油化工. 2022(06): 23-27 .
    15. 武绍杰. 液态二氧化碳在缝网压裂中的研究与应用. 采油工程. 2022(02): 12-18+89 .
    16. 何静,王满学,吴金桥,范昊坤,郭锦涛. 微乳液聚合物FRSP-1水溶液的流变特性研究. 精细石油化工. 2021(01): 63-67 .
    17. 陈昊,毕凯琳,张军,刘虎子,张胜,冯玉军. 非常规油气开采压裂用减阻剂研究进展. 油田化学. 2021(02): 347-359 .
    18. 刘福建,王立祥,杜良军,刘挺,张磊,刘斌. 耐盐型悬浮分散聚合物体系的制备及在盐水基变黏滑溜水体系中的应用. 钻井液与完井液. 2021(04): 504-509 .
    19. 赵玉东. 低伤害高效清洁滑溜水压裂液体系研制与应用. 大庆石油地质与开发. 2020(05): 65-71 .
    20. 刘建坤,蒋廷学,卞晓冰,苏瑗,刘世华,魏娟明. 常压页岩气低成本高效压裂技术对策. 钻井液与完井液. 2020(03): 377-383 .
    21. 张扬,赵永刚,闫永强,王海兵,杨晓影,王强. 页岩储层新型清洁滑溜水压裂液体系. 钻采工艺. 2020(04): 89-92+11 .
    22. 孟强,范锦锋,艾生军,刘刚,杨文斌,吴昊. 新型高效减阻剂研究及应用. 钻采工艺. 2020(04): 97-100+12 .
    23. 李嘉,李德旗,孙亚东,李然,张祥枫. 可变黏多功能压裂液体系及应用. 钻采工艺. 2020(04): 105-107+12 .
    24. 甄怀宾,陈帅,贾振福,李曙光,余丽珠. 致密气藏用乳液清洁压裂液的研究与应用. 应用化工. 2020(S1): 62-65+70 .
    25. 张晓虎,于世虎,周仲建,孙亚东,李嘉. 页岩气井用乳液型超分子压裂液制备与应用. 钻井液与完井液. 2019(01): 120-125 .
    26. 何静,王满学,吴金桥,王敏. 多功能滑溜水减阻剂的制备及性能评价. 油田化学. 2019(01): 48-52 .
    27. 闫秀,陈孝红,胡光,王冰,魏巍. FLICK减阻剂低温低伤害滑溜水研究与现场应用. 化学世界. 2019(05): 315-320 .
    28. 吴安林,李嘉,孙亚东,张晓虎,于世虎. 威远区块复合压裂液体系性能评价与应用. 新疆石油天然气. 2019(02): 85-87+5 .
    29. 贾金亚,魏娟明,贾文峰,眭世元,王程程,赵雄虎,穆代峰. 页岩气压裂用滑溜水胶液一体化稠化剂研究. 应用化工. 2019(06): 1247-1250 .
    30. 张锦宏. 中国石化石油工程技术现状及发展建议. 石油钻探技术. 2019(03): 9-17 . 本站查看
    31. 周仲建,于世虎,张晓虎. 页岩气用复合增效压裂液的研究与应用. 钻采工艺. 2019(04): 89-92+11-12 .
    32. 杨国旗,刘芳,程刚. 非常规天然气储层改造所用减阻剂的研究现状. 化工技术与开发. 2018(02): 41-42+51 .
    33. 李永飞,王彦玲,曹勋臣,刘飞,金碧涛,王刚霄. 页岩储层压裂用减阻剂的研究及应用进展. 精细化工. 2018(01): 1-9 .
    34. 陈馥,何雪梅,卜涛,吴红军,杨洋. 耐盐减阻剂的制备及性能评价. 精细石油化工. 2018(01): 51-55 .
    35. 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望. 石油钻探技术. 2018(01): 1-9 . 本站查看
    36. 冯潇霄,谢佩兰,代晓东,张忠达,王艳丽,杨光辉,李义扬. 液相流体加剂减阻相关理论及其应用进展. 节能. 2017(03): 4-8+2 .
    37. 李旭晖,郭丽梅,管保山,梁利,刘萍. 一种抗盐型丙烯酰胺共聚物的合成与评价. 石油化工. 2017(10): 1313-1318 .
    38. 黄召,何福耀,雷磊,丁建平,严维锋,谢中成. 新型高效抗磨减阻剂在东海油气田的应用. 钻井液与完井液. 2017(04): 49-54 .
    39. 孟磊,周福建,刘晓瑞,杨钊,石华强. 滑溜水用减阻剂室内性能测试与现场摩阻预测. 钻井液与完井液. 2017(03): 105-110 .
    40. 张锋三,沈一丁,王磊,马国艳,苏莹,任婷. 聚丙烯酰胺压裂液减阻剂的合成及性能. 化工进展. 2016(11): 3640-3644 .
    41. 马国艳,沈一丁,李楷,王小荣,郭兴. 滑溜水压裂液用聚合物减阻剂性能. 精细化工. 2016(11): 1295-1300 .
    42. 张锋三,沈一丁,任婷,苏莹. 聚丙烯酰胺压裂液减阻剂的合成及性能. 精细化工. 2016(12): 1422-1427 .
    43. 张亚东,苏雪霞,孙举,姜江. 国内压裂用减阻剂的研究及应用进展. 精细石油化工进展. 2016(04): 8-11 .
    44. 苏雪霞,李晓岚,孙举,谢娟,宋亚静. 耐盐速溶减阻剂的合成及其性能. 精细石油化工. 2016(06): 51-55 .
    45. 杨帆,王琳,林永学,杨小华,董晓强,王海波. 减阻水压裂液用黏土稳定剂的合成与应用. 钻井液与完井液. 2016(04): 109-113 .
    46. 张红妮,陈井亭. 低渗透油田蓄能整体压裂技术研究——以吉林油田外围井区为例. 非常规油气. 2015(05): 55-60 .
    47. 杜凯,林蔚然,祝纶宇,刘希,杜超,方昭. 生物基反相乳液型降阻剂与滑溜水体系的研发与评价. 化工新型材料. 2015(05): 215-217 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (223) PDF downloads (108) Cited by(66)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return