Citation: | ZHANG Guilin, ZHANG Xiaolin. Research and on-site application of “stable fluid volume” pressure control drilling technology [J]. Petroleum Drilling Techniques, 2024, 52(6):16−22. DOI: 10.11911/syztjs.2024115 |
In order to solve the problems of complex pressure control drilling technologies and excessive equipment matching and achieve balanced pressure drilling, the monitoring and identification methods of pressure balance in the well were first studied. The in-well pressure balance relationship and the state of pressure control drilling were analyzed. The pressure control principles, processes, and implementation method of “stable fluid volume” were studied, forming the "constant fluid level" automatic control technology to enable automatic control in “stable fluid volume” pressure control drilling. The fluid level control accuracy on the drilling site was maintained within 25 mm. The throttle valve could be adjusted to ensure “stable fluid volume” according to the changes in the circulating tank fluid level during drilling. This facilitated real-time balance between bottomhole pressure and formation pressure and ensured balanced pressure drilling. In on-site applications, a 35 MPa rotary blowout preventer was utilized, with a wellhead pressure not exceeding 7 MPa, and manual throttling control was adopted to successfully drill through the saltwater layer with a pressure coefficient of greater than 2.0 and zero pressure window, as well as the limestone fractured gas layer with a pressure coefficient of greater than 1.8 and zero pressure window, solving the drilling problem in Block B on the right bank of the Amu Darya River in Turkmenistan. Research has shown that compared with other pressure control methods, the supporting equipment of “stable fluid volume”pressure control drilling technology is simplified; the pressure control process is simple, and it has good on-site application value.
[1] |
周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技术,2019,47(3):68–74. doi: 10.11911/syztjs.2019071
ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74. doi: 10.11911/syztjs.2019071
|
[2] |
李群生,朱礼平,李果,等. 基于井下流量测量的微流量控制系统[J]. 石油钻探技术,2012,40(3):23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005
LI Qunsheng, ZHU Liping, LI Guo, et al. Micro-flow control system based on downhole flow measurement[J]. Petroleum Drilling Techniques, 2012, 40(3): 23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005
|
[3] |
孔祥伟,林元华,邱伊婕. 微流量控压钻井中节流阀动作对环空压力的影响[J]. 石油钻探技术,2014,42(3):22–26.
KONG Xiangwei, LIN Yuanhua, QIU Yijie. Effect of choke valve action on annular pressure with micro-flux control in MPD drilling[J]. Petroleum Drilling Techniques, 2014, 42(3): 22–26.
|
[4] |
李宗清,燕修良,陈永明,等. 三参数自动控压钻井系统的研制与试验[J]. 石油钻探技术,2012,40(6):99–103. doi: 10.3969/j.issn.1001-0890.2012.06.021
LI Zongqing, YAN Xiuliang, CHEN Yongming, et al. Development and test of three-parameter automatic pressure control drilling system[J]. Petroleum Drilling Techniques, 2012, 40(6): 99–103. doi: 10.3969/j.issn.1001-0890.2012.06.021
|
[5] |
杨雄文,周英操,方世良,等. 控压钻井分级智能控制系统设计与室内试验[J]. 石油钻探技术,2011,39(4):13–18. doi: 10.3969/j.issn.1001-0890.2011.04.003
YANG Xiongwen, ZHOU Yingcao, FANG Shiliang, et al. Design and laboratory test of hierarchical intelligent control system for managed pressure drilling[J]. Petroleum Drilling Techniques, 2011, 39(4): 13–18. doi: 10.3969/j.issn.1001-0890.2011.04.003
|
[6] |
张涛,柳贡慧,李军,等. 精细控压多级并联节流管汇系统研究[J]. 石油钻探技术,2012,40(2):98–103. doi: 10.3969/j.issn.1001-0890.2012.02.019
ZHANG Tao, LIU Gonghui, LI Jun, et al. Research on multi-level parallel choke manifold system[J]. Petroleum Drilling Techniques, 2012, 40(2): 98–103. doi: 10.3969/j.issn.1001-0890.2012.02.019
|
[7] |
郗凤亮,徐朝阳,马金山,等. 控压钻井自动分流管汇系统设计与数值模拟研究[J]. 石油钻探技术,2017,45(5):23–29. doi: 10.11911/syztjs.201705005
XI Fengliang, XU Chaoyang, MA Jinshan, et al. Design and numerical simulation of an automatic diverter manifold in managed pressure drilling[J]. Petroleum Drilling Techniques, 2017, 45(5): 23–29. doi: 10.11911/syztjs.201705005
|
[8] |
王果. 基于三级反馈调节的控压钻井回压自动调控方法[J]. 石油钻采工艺,2019,41(4):441–447. doi: 10.13639/j.odpt.2019.04.007
WANG Guo. Automatic backpressure control techniques of MPD drilling based on three-layer feedback regulation method[J]. Oil Drilling & Production Technology, 2019, 41(4): 441–447. doi: 10.13639/j.odpt.2019.04.007
|
[9] |
蒋振新,李军,郭勇,等. 井下双梯度控压钻井井筒多相流动规律[J]. 断块油气田,2024,31(5):936–944. doi: 10.6056/dkyqt202405025
JIANG Zhenxin, LI Jun, GUO Yong, et al. Multiphase flow law in wellbore during downhole dual-gradient controlled pressure drilling[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 936–944. doi: 10.6056/dkyqt202405025
|
[10] |
集团公司井控培训教材编写组. 钻井井控工艺技术[M]. 东营:中国石油大学出版社,2008:92-93.
Compilation Group of Well Control Training Textbooks for Group Companies. Drilling well control technology[M]. Dongying: China University of Petroleum Press, 2008: 92-93.
|
[11] |
张桂林. 土库曼斯坦亚苏尔哲别油田控压钻井技术[J]. 石油钻探技术,2010,38(6):37–41. doi: 10.3969/j.issn.1001-0890.2010.06.009
ZHANG Guilin. Application of managed pressure drilling technology in Azores Area, Turkmenistan[J]. Petroleum Drilling Techniques, 2010, 38(6): 37–41. doi: 10.3969/j.issn.1001-0890.2010.06.009
|
[12] |
张桂林. “液量稳定” 控压钻井方法[J]. 石油钻探技术,2013,41(4):54–58. doi: 10.3969/j.issn.1001-0890.2013.04.012
ZHANG Guilin. “Liquid volume stable” managed pressure drilling method[J]. Petroleum Drilling Techniques, 2013, 41(4): 54–58. doi: 10.3969/j.issn.1001-0890.2013.04.012
|
[13] |
张桂林. 土库曼斯坦阿姆河右岸B区块钻井关键技术[J]. 石油钻探技术,2015,43(6):1–6. doi: 10.11911/syztjs.201506001
ZHANG Guilin. Key drilling technologies in the block B at the right bank of Amu Darya, Turkmenistan[J]. Petroleum Drilling Techniques, 2015, 43(6): 1–6. doi: 10.11911/syztjs.201506001
|
[14] |
陈永明. 全过程欠平衡钻井中的不压井作业[J]. 石油钻探技术,2006,34(2):22–25. doi: 10.3969/j.issn.1001-0890.2006.02.006
CHEN Yongming. No-killing operations in whole course underbalanced drilling[J]. Petroleum Drilling Techniques, 2006, 34(2): 22–25. doi: 10.3969/j.issn.1001-0890.2006.02.006
|
[15] |
孙凯,梁海波,李黔,等. 控压钻井泥浆帽设计方法研究[J]. 石油钻探技术,2011,39(1):36–39. doi: 10.3969/j.issn.1001-0890.2011.01.008
SUN Kai, LIANG Haibo, LI Qian, et al. Research on mud cap design of managed pressure drilling[J]. Petroleum Drilling Techniques, 2011, 39(1): 36–39. doi: 10.3969/j.issn.1001-0890.2011.01.008
|
[16] |
彭明佳,刘伟,王瑛,等. 精细控压钻井重浆帽设计及压力控制方法[J]. 石油钻采工艺,2015,37(4):16–19.
PENG Mingjia, LIU Wei, WANG Ying, et al. Design of heavy grout and pressure control method for fine pressure-control drilling[J]. Oil Drilling & Production Technology, 2015, 37(4): 16–19.
|
1. |
魏建平,蔡玉波,刘勇,余大炀,黄逸,李兴,高梦雅. 非刀具破岩理论与技术研究进展与趋势. 煤炭学报. 2024(02): 801-832 .
![]() | |
2. |
白冰,陈勉,金衍. 超临界CO_2渗流的流-固-热多场耦合机理研究. 中国科学:物理学 力学 天文学. 2023(02): 101-113 .
![]() | |
3. |
白冰,陈勉,金衍. 超临界CO_2吸附效应对页岩地层井壁稳定影响研究. 岩石力学与工程学报. 2023(S1): 3508-3518 .
![]() | |
4. |
黄程,霍丽如,吴辰泓. 基于非常规油气开发的CO_2资源化利用技术进展及前景. 非常规油气. 2022(01): 1-9 .
![]() | |
5. |
孙晓,王海柱,李英杰,郑永,陆群. 超临界CO_2水平环空携砂试验研究. 石油钻探技术. 2022(03): 17-23 .
![]() | |
6. |
李木坤,王刚,程卫民,浦仕杰,倪红坚,时贤. 超临界二氧化碳射流破岩的热流固耦合机理. 石油勘探与开发. 2021(06): 1258-1268 .
![]() | |
7. |
乔兰,郝家旺,李占金,邓乃夫,李庆文. 基于微波加热技术的硬岩破裂方法探究. 煤炭学报. 2021(S1): 241-252 .
![]() | |
8. |
LI Mukun,WANG Gang,CHENG Weimin,PU Shijie,NI Hongjian,SHI Xian. Heat-fluid-solid coupling mechanism of supercritical carbon dioxide jet in rock-breaking. Petroleum Exploration and Development. 2021(06): 1450-1461 .
![]() |
|
9. |
杨晓峰,黄彦如,庞勇. 超临界二氧化碳射流火星采样技术研究. 航天器工程. 2020(02): 102-108 .
![]() | |
10. |
白鑫,张东明,王艳,王登科,蒋志刚,王小兵. 液态CO_2相变射流压力变化及其煤岩致裂规律. 中国矿业大学学报. 2020(04): 661-670 .
![]() | |
11. |
熊钰,莫军,李佩斯,蒋军,张烈辉. 致密气藏储层干化剂在超临界CO_2中的溶解性及增溶研究. 化学研究与应用. 2019(01): 72-78 .
![]() | |
12. |
罗攀登,李涵宇,翟立军,李春月,吕欣润,牟建业. 塔河油田超临界CO_2压裂井筒与裂缝温度场. 断块油气田. 2019(02): 225-230 .
![]() | |
13. |
王香增,郑永,吴金桥. 超临界CO_2射流特性数值模拟研究. 石油机械. 2019(09): 90-97 .
![]() | |
14. |
王毅博,王熙,柳愿. 超临界二氧化碳在非常规油气藏开采中的应用研究. 化工技术与开发. 2018(11): 29-32 .
![]() |