Citation: | CHEN Zuo, ZHAO Lekun, WEI Ran, et al. Technical advancements and development suggestions of geothermal heat reservoir stimulation in deep formations [J]. Petroleum Drilling Techniques, 2024, 52(6):10−15. DOI: 10.11911/syztjs.2024107 |
China has abundant geothermal resources in deep formations. Due to the characteristics of high temperature, high hardness, high stress, and high operation pressure, it is extremely difficult to economically utilize its heat energy through heat reservoir stimulation. A large number of geothermal resources in deep formations, such as high-temperature sedimentary rocks and dry hot rocks, have not been utilized on a large scale due to technical and economic limits. The latest research advancements of geothermal heat reservoir simulation in deep formations in China and overseas was summarized. It was found that the conventional injection and production mode of vertical wells or inclined wells and the general fracturing method failed to meet the needs of geothermal economical development in the deep formation. Therefore, suggestions were proposed, i.e. extensively developing combined injector and producer pattern of“vertical wells+horizontal wells”or“horizontal wells+horizontal wells”+staged fracturing technology, supporting high temperature-resistant tools and materials, and fracture system quantitative characterization technology, so as to ramp up China’s energy transformation and facilitate the achievement of “carbon peaking and carbon neutrality” goals.
[1] |
曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术,2015,43(2):1–7. doi: 10.11911/syztjs.201502001
ZENG Yijin. Technical progress and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7. doi: 10.11911/syztjs.201502001
|
[2] |
孙焕泉,毛翔,吴陈冰洁,等. 地热资源勘探开发技术与发展方向[J]. 地学前缘,2024,31(1):400–411.
SUN Huanquan, MAO Xiang, WU Chenbingjie, et al. Geothermal resources exploration and development technology: Current status and development directions[J]. Earth Science Frontiers, 2024, 31(1): 400–411.
|
[3] |
NORBECK J H, LATIMER T M. Commercial-scale demonstration of a first-of-a-kind enhanced geothermal system [EB/OL]. (2023-07-18) [2024-03-15]. https://doi.org/10.31223/X52X0B.
|
[4] |
丁栋. 地热资源勘探开发技术与发展方向[J]. 石化技术,2024,31(4):85–87. doi: 10.3969/j.issn.1006-0235.2024.04.027
DING Dong. Geothermal resource exploration and development technology and development direction[J]. Petrochemical Industry Technology, 2024, 31(4): 85–87. doi: 10.3969/j.issn.1006-0235.2024.04.027
|
[5] |
孙雷. 吉林省地热能开发利用现状及前景展望[J]. 吉林电力,2023,51(4):27–30. doi: 10.3969/j.issn.1009-5306.2023.04.007
SUN Lei. Prospects and suggestions of geothermal energy development and utilization in Jilin Province[J]. Jilin Electric Power, 2023, 51(4): 27–30. doi: 10.3969/j.issn.1009-5306.2023.04.007
|
[6] |
杨彩宏,周春伟. 中深层地热能开发及开采井型[J]. 中国高新区,2019(19):103–105.
YANG Caihong, ZHOU Chunwei. Development and mining well types of mid to deep geothermal energy[J]. Science & Technology Industry Parks, 2019(19): 103–105.
|
[7] |
付亚荣,李明磊,王树义,等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺,2018,40(4):526–540.
FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526–540.
|
[8] |
陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术,2019,47(6):1–8. doi: 10.11911/syztjs.2019110
CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110
|
[9] |
TITOV A, NORBECK J, DADI S, et al. Case study: completion and well placement optimization using distributed fiber optic sensing in next-generation geothermal projects[R]. URTEC 3852680, 2023.
|
[10] |
万志军,赵阳升,董付科,等. 高温及三轴应力下花岗岩体力学特性的实验研究[J]. 岩石力学与工程学报,2008,27(1):72–77. doi: 10.3321/j.issn:1000-6915.2008.01.011
WAN Zhijun, ZHAO Yangsheng, DONG Fuke, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 72–77. doi: 10.3321/j.issn:1000-6915.2008.01.011
|
[11] |
杜守继,刘华,职洪涛,等. 高温后花岗岩力学性能的试验研究[J]. 岩石力学与工程学报,2004,23(14):2359–2364. doi: 10.3321/j.issn:1000-6915.2004.14.010
DU Shouji, LIU Hua, ZHI Hongtao, et al. Testing study on mechanical properties of post-high-temperature granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2359–2364. doi: 10.3321/j.issn:1000-6915.2004.14.010
|
[12] |
郤保平,赵阳升. 600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报,2010,29(5):892–898.
XI Baoping, ZHAO Yangsheng. Experimental research on mechanical properties of water-cooled granite under high temperatures within 600 ℃[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 892–898.
|
[13] |
陈作,张保平,周健,等. 干热岩热储体积改造技术研究与试验[J]. 石油钻探技术,2020,48(6):82–87. doi: 10.11911/syztjs.2020098
CHEN Zuo, ZHANG Baoping, ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J]. Petroleum Drilling Techniques, 2020, 48(6): 82–87. doi: 10.11911/syztjs.2020098
|
[14] |
周健,曾义金,陈作,等. 青海共和盆地干热岩压裂裂缝测斜仪监测研究[J]. 石油钻探技术,2021,49(1):88–92. doi: 10.11911/syztjs.2020139
ZHOU Jian, ZENG Yijin, CHEN Zuo, et al. Research on fracture mapping with surface tiltmeters for “hot dry rock” stimulation in Gonghe Basin, Qinghai[J]. Petroleum Drilling Techniques, 2021, 49(1): 88–92. doi: 10.11911/syztjs.2020139
|
[15] |
CHEN Zuo, XU Guoqing, ZHOU Jian, et al. Fracture network volume fracturing technology in high-temperature hard formation of hot dry rock[J]. Acta Geologica Sinica(English Edition), 2021, 95(6): 1828–1834.
|
[16] |
陈龙,乔勇,张益国,等. 2022年我国地热能发展进展及建议[J]. 水力发电,2023,49(12):1–4. doi: 10.3969/j.issn.0559-9342.2023.12.001
CHEN Long, QIAO Yong, ZHANG Yiguo, et al. Progress and suggestions on the development of geothermal energy in China in 2022[J]. Water Power, 2023, 49(12): 1–4. doi: 10.3969/j.issn.0559-9342.2023.12.001
|
[17] |
张盛生,张磊,田成成,等. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报,2019,25(4):501–508. doi: 10.12090/j.issn.1006-6616.2019.25.04.048
ZHANG Shengsheng, ZHANG Lei, TIAN Chengcheng, et al. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe Basin[J]. Journal of Geomechanics, 2019, 25(4): 501–508. doi: 10.12090/j.issn.1006-6616.2019.25.04.048
|
[18] |
张森琦,严维德,黎敦朋,等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质,2018,45(6):1087–1102. doi: 10.12029/gc20180601
ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 2018, 45(6): 1087–1102. doi: 10.12029/gc20180601
|
[19] |
谢文苹,路睿,张盛生,等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术,2020,48(3):77–84. doi: 10.11911/syztjs.2020042
XIE Wenping, LU Rui, ZHANG Shengsheng, et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042
|
[20] |
陈臻,关俊朋,王丽娟,等. 增强型地热系统在碳酸盐岩型深层地热能开发利用中的应用进展[J]. 地质学刊,2023,47(2):216–224. doi: 10.3969/j.issn.1674-3636.2023.02.015
CHEN Zhen, GUAN Junpeng, WANG Lijuan, et al. Progress in the application of enhanced geothermal systems in the exploitation and utilization of deep geothermal energy in carbonate rocks[J]. Journal of Geology, 2023, 47(2): 216–224. doi: 10.3969/j.issn.1674-3636.2023.02.015
|
[1] | GUO Zhaohui, LI Zhen, LUO Hengrong. Research and Application of a ϕ273.1 mm Infinite Circulation Liner Hanger in Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(5): 64-69. DOI: 10.11911/syztjs.2021004 |
[2] | WANG Xuelong, HE Xuanpeng, LIU Xianfeng, CHENG Tianhui, LI Ruiliang, FU Qiang. Key Drilling Technologies for Complex Ultra-Deep Wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(1): 15-20. DOI: 10.11911/syztjs.2020028 |
[3] | LIN Yongxue, WANG Weiji, JIN Junbin. Key Drilling Fluid Technology in the Ultra Deep Section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113-120. DOI: 10.11911/syztjs.2019068 |
[4] | LUO Wei, LIN Yongmao, DONG Haifeng, WU Qiang. Wellbore Blockage Removing Technologies in the Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(5): 109-114. DOI: 10.11911/syztjs.2018116 |
[5] | Qiao Lingliang, Hu Daliang, Xiao Guoyi. ROP Improvement Technology for High-Pressure Terrestrial Tight Abrasive Formations in the Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(5): 44-48. DOI: 10.11911/syztjs.201505008 |
[6] | Guan Shuwei. Development and Testing of a New Type of Diamond-Impregnated Bits[J]. Petroleum Drilling Techniques, 2015, 43(4): 129-132. DOI: 10.11911/syztjs.201504023 |
[7] | Li Shuang, Dong Bo, Kong Fangqing, Xie Yongbin. New Technology for Stuck Drill Pipe Using Mud Loss-Proof Emulsified Acid Implemented in a Ultra-Deep Horizontal Well in the Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(2): 44-49. DOI: 10.11911/syztjs.201502008 |
[8] | Pu Hongjiang, Zhang Linhai, Hou Yuequan, Zhou Xiaofei, Liu Jian. Large Size Nonstandard Liner Cementing Technique in Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(4): 64-68. DOI: 10.3969/j.issn.1001-0890.2014.04.012 |
[9] | Ge Pengfei, Ma Qingtao, Zhang Dong. Optimization and Application of Ultra-Deep Well Casing Program in Yuanba Area[J]. Petroleum Drilling Techniques, 2013, 41(4): 83-86. DOI: 10.3969/j.issn.1001-0890.2013.04.018 |
[10] | Yan Guangqing, Liu Kuangxiao, Guo Ruichang, Liu Jianhua, Wu Haiyan. Ultra-Deep Sidetracking in Well Yuanba 272H[J]. Petroleum Drilling Techniques, 2013, 41(1): 113-117. DOI: 10.3969/j.issn.1001-0890.2013.01.022 |
1. |
李润森,侯冰,周长静,何明舫,刘欣佳. 砂泥岩薄互储层缝控压裂力学机理及穿层判别准则. 中国海上油气. 2025(01): 156-166 .
![]() | |
2. |
侯冰,廖志豪,张庄,罗加伦,琚宜文,王文. 水力压裂物理模拟方法的数字化和智能化发展综述. 辽宁石油化工大学学报. 2025(02): 1-12 .
![]() | |
3. |
端祥刚,胡志明,常进,石雨昕,吴振凯,许莹莹. 页岩储层无支撑缝网区流动能力影响因素研究与进展. 特种油气藏. 2025(01): 22-31 .
![]() | |
4. |
吕振虎,吕蓓,罗垚,吴虎,李丽哲,王博. 基于光纤监测的段内多簇暂堵方案优化. 石油钻探技术. 2024(01): 114-121 .
![]() | |
5. |
贾文婷,牟建业,李小伟,王新亮,张士诚,王丽峰. 射孔参数对砂砾岩储层压裂的影响. 石油钻采工艺. 2024(01): 97-105 .
![]() | |
6. |
房茂军,杜旭林,白玉湖,李昊,张浩,朱海燕. 多薄层致密砂岩储层大型水力压裂三维物理模拟实验. 石油实验地质. 2024(04): 786-798 .
![]() | |
7. |
王剑波,侯冰,滕卫卫,李小迪,刘见通,梁宝兴,张远凯,魏云. 致密砾岩储层力学特征与水力裂缝扩展机理研究进展. 石油科学通报. 2024(06): 972-990 .
![]() | |
8. |
陈瑞杰,熊志文,王瑞,郝少伟. 煤层顶板水力压裂裂缝扩展规律实验研究. 中国矿业. 2024(12): 208-216 .
![]() | |
9. |
刘剑,邵振宝,付京斌,吴珍锁,王耀宗,王会昊. 压裂路径对水力压裂裂纹扩展影响试验研究. 河北工程大学学报(自然科学版). 2024(06): 8-17 .
![]() | |
10. |
刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 .
![]() |