LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors [J]. Petroleum Drilling Techniques, 2024, 52(4):94-103. DOI: 10.11911/syztjs.2024069
Citation: LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors [J]. Petroleum Drilling Techniques, 2024, 52(4):94-103. DOI: 10.11911/syztjs.2024069

Evaluation of Shale Oil Extraction by Supercritical CO2 and Analysis of Influencing Factors

More Information
  • Received Date: November 08, 2022
  • Revised Date: July 10, 2024
  • Available Online: July 22, 2024
  • To define the influence mechanism of fractures and pressure on the extraction of shale oil by supercritical CO2, the core extraction experiment by supercritical CO2 was conducted on the basis of identifying the pore size distribution, specific surface area, and pore volume of experimental shales. The improved magnetic suspension balance high pressure adsorption instrument was used to measure the shale mass change under high temperature and pressure in real time. Combined with the nuclear magnetic resonance (NMR) T2 spectrum of shale, the extraction efficiency of shale oil by supercritical CO2 was accurately measured, and the producing characteristics of shale pores and the lower limit of producing pore size in the extraction process were defined. The experimental results show that the target reservoir shale mesopore (pore size of 2~50 nm) is the most developed, accounting for 69.72% and 73.47% of the total pore volume and total specific surface area. However, macropores (>50 nm) are the least developed, accounting for only 4.45% and 10.77% of the total pore volume and total specific surface area. The crude oil mainly exists in the pores with a small pore size of 1.4~120 nm. The extraction effect of CO2 on the crude oil in the pores with large pore size (>86 nm) is better than that in the pores with small pore size (≤86 nm). Fractures can increase the contact area between CO2 and shale oil in the matrix, accelerate the mass transfer rate of oil and gas, improve the depth of matrix production, and reduce the shale oil seepage resistance and the lower limit of pore production. However, the CO2 extraction efficiency is not only related to the number of fractures but also affected by matrix permeability and fracture-matrix connectivity. The lower limit of pore size for CO2 production decreases with the increase in injection pressure from 6.54 nm at 8 MPa to 3.27 nm at 18 MPa. The research findings provide a reference for enhancing the recovery rate of shale oil by injecting CO2.

  • [1]
    董岩,肖佃师,彭寿昌,等. 页岩油层系储集层微观孔隙非均质性及控制因素:以吉木萨尔凹陷芦草沟组为例[J]. 矿物岩石地球化学通报,2021,40(1):115–123.

    DONG Yan, XIAO Dianshi, PENG Shouchang, et al. Heterogeneity of microscopic pores in shale oil reservoir and its controlling factors: taking the Lucaogou Formation in the Jimusar Sag as an example[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 115–123.
    [2]
    卢双舫,李俊乾,张鹏飞,等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发,2018,45(3):436–444. doi: 10.11698/PED.2018.03.08

    LU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436–444. doi: 10.11698/PED.2018.03.08
    [3]
    屈海清. 鄂尔多斯盆地页岩气的开发[J]. 化工设计通讯,2019,45(7):264–265. doi: 10.3969/j.issn.1003-6490.2019.07.172

    QU Haiqing. Shale gas development in Ordos Basin[J]. Chemical Engineering Design Communications, 2019, 45(7): 264–265. doi: 10.3969/j.issn.1003-6490.2019.07.172
    [4]
    王晓雯. 致密油藏储层敏感性评价及主控因素研究[J]. 特种油气藏,2021,28(1):103–110. doi: 10.3969/j.issn.1006-6535.2021.01.015

    WANG Xiaowen. Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 103–110. doi: 10.3969/j.issn.1006-6535.2021.01.015
    [5]
    MA Quanzheng, YANG Shenglai, LYU Daoping, et al. Experimental investigation on the influence factors and oil production distribution in different pore sizes during CO2 huff-n-puff in an ultra-high-pressure tight oil reservoir[J]. Journal of Petroleum Science and Engineering, 2019, 178: 1155–1163. doi: 10.1016/j.petrol.2019.04.012
    [6]
    胡伟,吕成远,王锐,等. 水驱转CO2混相驱渗流机理及传质特征[J]. 石油学报,2018,39(2):201–207. doi: 10.7623/syxb201802008

    HU Wei, LYU Chengyuan, WANG Rui, et al. Porous flow mechanisms and mass transfer characteristics of CO2 miscible flooding after water flooding[J]. Acta Petrolei Sinica, 2018, 39(2): 201–207. doi: 10.7623/syxb201802008
    [7]
    李凤霞,王海波,周彤,等. 页岩油储层裂缝对CO2吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术,2022,50(2):38–44. doi: 10.11911/syztjs.2022006

    LI Fengxia, WANG Haibo, ZHOU Tong, et al. The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38–44. doi: 10.11911/syztjs.2022006
    [8]
    GAMADI T D, SHENG J J, SOLIMAN M Y, et al. An experimental study of cyclic CO2 injection to improve shale oil recovery[R]. SPE 169142, 2014.
    [9]
    LI Lei, SU Yuliang, HAO Yongmao, et al. A comparative study of CO2 and N2 huff-n-puff EOR performance in shale oil production [J]. Journal of Petroleum Science and Engineering, 2019, 181: 106174. doi: 10.1016/j.petrol.2019.06.038
    [10]
    李二党,韩作为,高祥瑞,等. 不同注气介质驱替致密油藏微观孔隙动用特征研究[J]. 石油钻探技术,2020,48(5):85–91. doi: 10.11911/syztjs.2020078

    LI Erdang, HAN Zuowei, GAO Xiangrui, et al. Research on the microscopic pore producing characteristics of tight reservoirs displaced by different gas injection media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85–91. doi: 10.11911/syztjs.2020078
    [11]
    LI Lei, SHENG J J. Numerical analysis of cyclic CH4 injection in liquid-rich shale reservoirs based on the experiments using different-diameter shale cores and crude oil[J]. Journal of Natural Gas Science and Engineering, 2017, 39: 1–14. doi: 10.1016/j.jngse.2017.01.017
    [12]
    ABEDINI A, TORABI F. Oil recovery performance of immiscible and miscible CO2 huff-and-puff processes[J]. Energy & Fuels, 2014, 28(2): 774–784.
    [13]
    YU Haiyang, XU Hang, FU Wenrui, et al. Extraction of shale oil with supercritical CO2: effects of number of fractures and injection pressure[J]. Fuel, 2021, 285: 118977. doi: 10.1016/j.fuel.2020.118977
    [14]
    刘永. 基于核磁共振流态分析的页岩微纳米孔隙类型划分方法[D]. 北京:中国地质大学(北京),2018.

    LIU Yong. A study of shale pore size classification by using low field nuclear magnetic resonance fluid typing method[D]. Beijing: China University of Geosciences(Beijing), 2018.
    [15]
    岳长涛,李术元,许心怡,等. 宜宾地区页岩微孔特征及吸附解吸特性研究[J]. 西南石油大学学报(自然科学版),2018,40(5):84–94.

    YUE Changtao, LI Shuyuan, XU Xinyi, et al. Micropore characteristics and adsorption and desorption properties of shales in the Yibin region[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2018, 40(5): 84–94.
    [16]
    肖立志,罗嗣慧,龙志豪. 井场核磁共振技术及其应用的发展历程与展望[J]. 石油钻探技术,2023,51(4):140–148. doi: 10.11911/syztjs.2023034

    XIAO Lizhi, LUO Sihui, LONG Zhihao. The course of development and the future of wellsite NMR technologies and their applications[J]. Petroleum Drilling Techniques, 2023, 51(4): 140–148. doi: 10.11911/syztjs.2023034
    [17]
    LYU Chaohui, NING Zhengfu, WANG Qing, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy & Fuels, 2018, 32(2): 1395–1405.
    [18]
    姚艳斌,刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报,2018,43(1):181–189.

    YAO Yanbin, LIU Dameng. Petrophysical properties and fluids transportation in gas shale: a NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1): 181–189.
    [19]
    郎东江,伦增珉,吕成远,等. 页岩油注二氧化碳提高采收率影响因素核磁共振实验[J]. 石油勘探与开发,2021,48(3):603–612. doi: 10.11698/PED.2021.03.15

    LANG Dongjiang, LUN Zengmin, LYU Chengyuan, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603–612. doi: 10.11698/PED.2021.03.15
    [20]
    黄兴,李响,张益,等. 页岩油储集层二氧化碳吞吐纳米孔隙原油微观动用特征[J]. 石油勘探与开发,2022,49(3):557–564. doi: 10.11698/PED.20210582

    HUANG Xing, LI Xiang, ZHANG Yi, et al. Microscopic production characteristics of crude oil in nano-pores of shale oil reservoirs during CO2 huff and puff[J]. Petroleum Exploration and Development, 2022, 49(3): 557–564. doi: 10.11698/PED.20210582
  • Cited by

    Periodical cited type(19)

    1. 孙平涛,赵建忠,刘强. 吉林油田页岩油水平井二开钻井关键技术及应用. 天然气勘探与开发. 2024(03): 111-117 .
    2. 刘明,许鹏,陈述,夏林,边建杰,张华. 四川盆地致密气水平井钻井关键技术. 非常规油气. 2024(04): 152-159 .
    3. 王峰,杨建申,马凯,李瑞玲. 大港油田沧东凹陷页岩油水平井钻井关键技术. 西部探矿工程. 2023(03): 36-38+43 .
    4. 王建龙,马凯,贾巍然,韩自立,柳鹤,李萍. 深层页岩气水平井优快钻井配套技术. 西部探矿工程. 2023(10): 76-79 .
    5. 李云峰,吴晓红,李然,周岩,罗成. 高5断块深层致密油水平井钻井关键技术实践. 石油机械. 2023(11): 102-107 .
    6. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    7. 史配铭,倪华峰,石崇东,王学枫,王万庆,屈艳平. 苏里格致密气藏超长水平段水平井钻井完井关键技术. 石油钻探技术. 2022(01): 13-21 . 本站查看
    8. 姜政华,孙钢,陈士奎,李伯尧,董红烨. 南川页岩气田超长水平段水平井钻井关键技术. 石油钻探技术. 2022(05): 20-26 . 本站查看
    9. 殷召海,李国强,王海,丁永亮,王雲,刘长柱. 克拉苏构造带博孜1区块复杂超深井钻井完井关键技术. 石油钻探技术. 2021(01): 16-21 . 本站查看
    10. 胡祖彪,张建卿,王清臣,孟凡金,侯博,张勤,屈艳平. 长庆致密气超长水平段水基钻井液技术. 钻井液与完井液. 2021(02): 183-188 .
    11. 刘天恩,张海军,袁光杰,李国韬,阴启武,陈斐. 沧东凹陷页岩油水平井优快钻井技术. 石油钻探技术. 2021(04): 46-52 . 本站查看
    12. 田福春,刘学伟,张胜传,张高峰,邵力飞,陈紫薇. 大港油田陆相页岩油滑溜水连续加砂压裂技术. 石油钻探技术. 2021(04): 118-124 . 本站查看
    13. 于坤,车健. 大庆油田页岩油水平井钻井液技术. 钻井液与完井液. 2021(03): 311-316 .
    14. 吴广民,何星,杨宝侠,孙建双. 致密油水平井地质优化技术探讨. 采油工程. 2021(04): 49-52+89 .
    15. 党文辉,刘天恩,袁光杰,钟守明,李国韬,宋琳,张弘. 呼图壁储气库勺型水平井钻井关键技术. 石油钻采工艺. 2021(05): 593-600 .
    16. 柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 . 本站查看
    17. 杨灿,王鹏,饶开波,蔺玉水,李伟,叶顺友. 大港油田页岩油水平井钻井关键技术. 石油钻探技术. 2020(02): 34-41 . 本站查看
    18. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    19. 王建龙,冯冠雄,刘学松,郭瑞,高学生,霍阳. 长宁页岩气超长水平段水平井钻井完井关键技术. 石油钻探技术. 2020(05): 9-14 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (101) PDF downloads (41) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return