Citation: | WANG Jing, QI Jian, YUE Ming. Efficient closed transportation technologies for offshore water-based drilling cuttings [J]. Petroleum Drilling Techniques, 2024, 52(3):53-60. DOI: 10.11911/syztjs.2023105 |
In order to solve the problems of low transportation efficiency and high environmental protection risks in the process of offshore water-based drilling cuttings recovery, based on the analysis of the characteristics and transportation difficulties of water-based drilling cuttings, a set of efficient closed transportation technologies suitable for offshore water-based drilling cuttings transportation was studied, and the frictional resistance in the transportation process of drilling cuttings was analyzed. Research on resistance reduction and anti-blocking pigging technologies was also conducted. The model calculation results and field test data showed that the closed transportation of water-based drilling cuttings should adopt hydraulic transportation technology, combined with the design of transportation pipeline and pressurized mixer, to effectively reduce resistance and improve the velocity. When the pumping speed was set at 30%−100%, the transportation capacity was 7.5−25.7 m3/h, and the pumping pressure was 1.4−2.8 MPa. The research results show that the closed transportation technology of offshore water-based drilling cuttings solves the problems of efficient, closed, and long-distance transportation of water-based drilling cuttings. It can meet the needs of offshore drilling operations and is of great popularization, application, and commercialization value.
[1] |
梅波. 渤海海域油气田水基钻井废弃物危险特性研究[J]. 天津化工,2022,36(2):121–124. doi: 10.3969/j.issn.1008-1267.2022.02.035
MEI Bo. Research of hazard identification of water-based drilling wastes in Bohai offshore oilfield[J]. Tianjin Chemical Industry, 2022, 36(2): 121–124. doi: 10.3969/j.issn.1008-1267.2022.02.035
|
[2] |
苏勤,何青水,张辉,等. 国外陆上钻井废弃物处理技术[J]. 石油钻探技术,2010,38(5):106–110.
SU Qin, HE Qingshui, ZHANG Hui, et al. Foreign onshore drilling waste treatment technology[J]. Petroleum Drilling Techniques, 2010, 38(5): 106–110.
|
[3] |
张羽臣,岳明,霍宏博,等. 渤海钻井废物无害化处置技术研究[J]. 油气田环境保护,2020,30(5):13–16. doi: 10.3969/j.issn.1005-3158.2020.05.004
ZHANG Yuchen, YUE Ming, HUO Hongbo, et al. Research on the harmless disposal technology of drilling waste in Bohai Oilfield[J]. Environmental Protection of Oil & Gas Fields, 2020, 30(5): 13–16. doi: 10.3969/j.issn.1005-3158.2020.05.004
|
[4] |
李晓刚,杨保健,王攀. 勘探环保配套技术的研究及在渤海油田的应用[J]. 科技创新与应用,2018(20):113–114.
LI Xiaogang, YANG Baojian, WANG Pan. Research on supporting technology of exploration and environmental protection and its application in Bohai Oil Field[J]. Technology Innovation and Application, 2018(20): 113–114.
|
[5] |
王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95–102. doi: 10.11911/syztjs.2019054
WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102. doi: 10.11911/syztjs.2019054
|
[6] |
薛玉志,马云谦,李公让,等. 海上废弃钻井液处理研究[J]. 石油钻探技术,2008,36(5):12–16. doi: 10.3969/j.issn.1001-0890.2008.05.003
XUE Yuzhi, MA Yunqian, LI Gongrang, et al. Offshore waste drilling fluid treatment[J]. Petroleum Drilling Techniques, 2008, 36(5): 12–16. doi: 10.3969/j.issn.1001-0890.2008.05.003
|
[7] |
谢恩年. 渤海生态修复与治理思路[J]. 环境保护,2010(11):49–51. doi: 10.3969/j.issn.0253-9705.2010.11.014
XIE Ennian. Ideas on ecological restoration and governance in the Bohai Sea[J]. Environmental Protection, 2010(11): 49–51. doi: 10.3969/j.issn.0253-9705.2010.11.014
|
[8] |
江先雄. 美国海上CleanCut闭式钻屑清除系统[J]. 石油机械,2002,30(11):59–60. doi: 10.3969/j.issn.1001-4578.2002.11.021
JIANG Xianxiong. American offshore CleanCut closed cuttings removal system[J]. China Petroleum Machinery, 2002, 30(11): 59–60. doi: 10.3969/j.issn.1001-4578.2002.11.021
|
[9] |
安文忠,陈建兵,牟小军,等. 钻屑回注技术及其在国内油田的首次应用[J]. 石油钻探技术,2003,31(1):22–25. doi: 10.3969/j.issn.1001-0890.2003.01.008
AN Wenzhong, CHEN Jianbing, MOU Xiaojun, et al. Applications of cuttings re-injection technology used in Penglai 19-3 Oilfield[J]. Petroleum Drilling Techniques, 2003, 31(1): 22–25. doi: 10.3969/j.issn.1001-0890.2003.01.008
|
[10] |
吕广,马英文,张晓诚,等. 水基钻屑絮凝压滤一体机的研制与应用[J]. 石油机械,2020,48(6):52–56. doi: 10.16082/j.cnki.issn.1001-4578.2020.06.008
LYU Guang, MA Yingwen, ZHANG Xiaocheng, et al. Research and application of water based drilling cuttings flocculation filter press system[J]. China Petroleum Machinery, 2020, 48(6): 52–56. doi: 10.16082/j.cnki.issn.1001-4578.2020.06.008
|
[11] |
侯永亮,宋峙潮,陈真,等. “零排放” 技术在渤海油田的研究与应用[J]. 石油化工应用,2022,41(4):34–38. doi: 10.3969/j.issn.1673-5285.2022.04.008
HOU Yongliang, SONG Zhichao, CHEN Zhen, et al. Research and application of “zero emission” technology in Bohai Oilfield[J]. Petrochemical Industry Application, 2022, 41(4): 34–38. doi: 10.3969/j.issn.1673-5285.2022.04.008
|
[12] |
吕聪. 钻井液粘滞力作用下大位移井附加摩阻扭矩计算分析[J]. 石化技术,2019,26(8):54–56. doi: 10.3969/j.issn.1006-0235.2019.08.035
LYU Cong. Calculation and analysis of additional friction torque of extended reach well under viscous force of drilling fluid[J]. Petrochemical Industry Technology, 2019, 26(8): 54–56. doi: 10.3969/j.issn.1006-0235.2019.08.035
|
[13] |
蔡利山,赵素丽. 钻井液润滑剂润滑能力影响因素分析与评价[J]. 石油钻探技术,2003,31(1):44–46. doi: 10.3969/j.issn.1001-0890.2003.01.016
CAI Lishan, ZHAO Suli. Analysis and evaluation of influence factors of lubricating ability of lubricants for drilling fluids[J]. Petroleum Drilling Techniques, 2003, 31(1): 44–46. doi: 10.3969/j.issn.1001-0890.2003.01.016
|
[14] |
李晓玫. 新型高稳定且低黏附超疏水表面的制备及其性能研究[D]. 成都: 电子科技大学, 2019.
LI Xiaomei. Preparation and properties of a novel superhydrophobic surface with high stability and low adhesion[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
[15] |
郭光明,郑晓雯,吴淼. 管道输送危险废物泵送压力试验研究[J]. 矿业科学学报,2021,6(1):82–90.
GUO Guangming, ZHENG Xiaowen, WU Miao. Experimental study on pumping pressure of pipeline transportation of hazardous waste[J]. Journal of Mining Science, 2021, 6(1): 82–90.
|
[16] |
许振良. 一个非均质流水力坡度解析的新模型[J]. 泥沙研究,2000,25(1):56–64. doi: 10.3321/j.issn:0468-155X.2000.01.009
XU Zhenliang. A new model of predicting hydraulic gradient for settling slurry flow in a horizontal pipe[J]. Journal of Sediment Research, 2000, 25(1): 56–64. doi: 10.3321/j.issn:0468-155X.2000.01.009
|
[17] |
罗焕,薛登存,张婷婷. 三种气液混输软件的模拟计算与分析[J]. 中国科技信息,2015(1):114–116. doi: 10.3969/j.issn.1001-8972.2015.01.042
LUO Huan, XUE Dengcun, ZHANG Tingting. Simulation calculation and analysis of three gas-liquid mixed transport software[J]. China Science and Technology Information, 2015(1): 114–116. doi: 10.3969/j.issn.1001-8972.2015.01.042
|
[18] |
吴鑫鑫,安垚,孙啸,等. 管道仿真技术发展与应用进展[J]. 管道技术与设备,2017(4):1–3. doi: 10.3969/j.issn.1004-9614.2017.04.001
WU Xinxin, AN Yao, SUN Xiao, et al. Development and advances in application of pipeline simulation technology[J]. Pipeline Technique and Equipment, 2017(4): 1–3. doi: 10.3969/j.issn.1004-9614.2017.04.001
|
[19] |
吕科,赵涛. 基于不同数学模型对某弯道式渠首水沙运动的数值模拟对比研究[J]. 水资源与水工程学报,2018,29(2):150–155.
LYU Ke, ZHAO Tao. Numerical simulation study on flow and sediment movement of a bend canal based on different mathematical models[J]. Journal of Water Resources and Water Engineering, 2018, 29(2): 150–155.
|
[20] |
胡远洋,江斌,江文彬,等. 文丘里分流器的结构优化与分配特性研究[J]. 合肥工业大学学报(自然科学版),2022,45(6):736–741. doi: 10.3969/j.issn.1003-5060.2022.06.004
HU Yuanyang, JIANG Bin, JIANG Wenbin, et al. Study on structure optimization and distribution characteristics of Venturi distributor[J]. Journal of Hefei University of Technology(Natural Science), 2022, 45(6): 736–741. doi: 10.3969/j.issn.1003-5060.2022.06.004
|
[21] |
刘德灿. 文丘里喷射泵结构设计与流场分析[J]. 机电技术,2021(5):52–55. doi: 10.19508/j.cnki.1672-4801.2021.05.016
LIU Decan. Structural design and flow field analysis of Venturi jet pump[J]. Mechanical & Electrical Technology, 2021(5): 52–55. doi: 10.19508/j.cnki.1672-4801.2021.05.016
|
1. |
刘小年,刘燕云,刘豪,陈少奇,徐单廷,于立晨,蒋文明. 海上油田钻屑远距离传输摩阻计算研究. 化工科技. 2024(03): 46-53 .
![]() | |
2. |
陈强,张忠亮,赖辰熙,李斌,何兵,郭磊,冯永存. 水基钻屑固液分离室内实验研究. 石化技术. 2024(10): 61-63 .
![]() |