CUI Zhuang, HOU Bing. A numerical simulation for damage mechanical behavior of Brazilian splitting test of deep shales [J]. Petroleum Drilling Techniques,2024, 52(2):218-228. DOI: 10.11911/syztjs.2024032
Citation: CUI Zhuang, HOU Bing. A numerical simulation for damage mechanical behavior of Brazilian splitting test of deep shales [J]. Petroleum Drilling Techniques,2024, 52(2):218-228. DOI: 10.11911/syztjs.2024032

A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales

More Information
  • Received Date: January 04, 2024
  • Revised Date: February 15, 2024
  • Available Online: March 19, 2024
  • In order to investigate the mechanism between shale texture characteristics and tensile strength, a three-dimensional Brazilian splitting test numerical model was established by the cohesive element method. The effects of texture angle and strength on damage modes and tensile strength were studied, and the crack growth behavior was accurately analyzed using acoustic emission distribution characteristics. The results indicate that the numerical simulation outcomes of the Brazilian splitting test were basically in accordance with the experimental results. The cohesive element method can be used to predict the shale’s damage behavior. The damage modes of shale specimens are classified into six categories under the coupling of texture angle and strength. For shale specimens with central damage, the acoustic emission (AE) energy-displacement curves are dominated by a single-peak distribution type. For shale specimens with tension-shear mixed damage, the AE energy-displacement curves are dominated by a multiple-peak distribution type. The tensile strength of shale specimens is significantly anisotropic. As the texture strength increases, and the primary crack approaches the loading diameter direction, the tensile strength of the specimens gets higher under the same texture angle. The results of the study also reveal the damage mechanisms in deep shales and provide theoretical basis for the fracturing design for shale reservoirs.

  • [1]
    蒋廷学,肖博,沈子齐,等. 陆相页岩油气水平井穿层体积压裂技术[J]. 石油钻探技术,2023,51(5):8–14.

    JIANG Tingxue, XIAO Bo, SHEN Ziqi, et al. Vertical penetration of network fracturing technology for horizontal wells in continental shale oil and gas[J]. Petroleum Drilling Techniques, 2023, 51(5): 8–14.
    [2]
    朱海燕,焦子曦,刘惠民,等. 济阳坳陷陆相页岩油气藏组合缝网高导流压裂关键技术[J]. 天然气工业,2023,43(11):120–130.

    ZHU Haiyan, JIAO Zixi, LIU Huimin, et al. A new high-conductivity combined network fracturing technology for continental shale oil and gas reservoirs in the Jiyang Depression[J]. Natural Gas Industry, 2023, 43(11): 120–130.
    [3]
    付金华,郭雯,李士祥,等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学,2021,32(12):1749–1761.

    FU Jinhua, GUO Wen, LI Shixiang, et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749–1761.
    [4]
    雷群,翁定为,管保山,等. 中美页岩油气开采工程技术对比及发展建议[J]. 石油勘探与开发,2023,50(4):824–831.

    LEI Qun, WENG Dingwei, GUAN Baoshan, et al. Shale oil and gas exploitation in China: Technical comparison with US and development suggestions[J]. Petroleum Exploration and Development, 2023, 50(4): 824–831.
    [5]
    NIANDOU H, SHAO J F, HENRY J P, et al. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3–16. doi: 10.1016/S1365-1609(97)80029-9
    [6]
    WANG Jun, XIE Lingzhi, XIE Heping, et al. Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests[J]. Journal of Natural Gas Science and Engineering, 2016, 36(Part B): 1120-1129.
    [7]
    VERVOORT A, MIN K B, KONIETZKY H, et al. Failure of transversely isotropic rock under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 343–352. doi: 10.1016/j.ijrmms.2014.04.006
    [8]
    CHO J W, KIM H, JEON S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158–169. doi: 10.1016/j.ijrmms.2011.12.004
    [9]
    杨志鹏,何柏,谢凌志,等. 基于巴西劈裂试验的页岩强度与破坏模式研究[J]. 岩土力学,2015,36(12):3447–3455.

    YANG Zhipeng, HE Bai, XIE Lingzhi, et al. Strength and failure modes of shale based on Brazilian test[J]. Rock and Soil Mechanics, 2015, 36(12): 3447–3455.
    [10]
    张树文,鲜学福,周军平,等. 基于巴西劈裂试验的页岩声发射与能量分布特征研究[J]. 煤炭学报,2017,42(增刊2):346-353.

    ZHANG Shuwen, XIAN Xuefu, ZHOU Junping, et al. Acoustic emission characteristics and the energy distribution of the shale in Brazilian splitting testing[J]. Journal of China Coal Society, 2017, 42(supplement 2): 346-353.
    [11]
    崔壮,侯冰,付世豪,等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田,2022,29(1):111–117.

    CUI Zhuang, HOU Bing, FU Shihao, et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 111–117.
    [12]
    张丰收,吴建发,黄浩勇,等. 提高深层页岩裂缝扩展复杂程度的工艺参数优化[J]. 天然气工业,2021,41(1):125–135.

    ZHANG Fengshou, WU Jianfa, HUANG Haoyong, et al. Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs[J]. Natural Gas Industry, 2021, 41(1): 125–135.
    [13]
    HOU Bing, CUI Zhuang, DING Jihui, et al. Perforation optimization of layer-penetration fracturing for commingling gas production in coal measure strata[J]. Petroleum Science, 2022, 19(4): 1718–1734. doi: 10.1016/j.petsci.2022.03.014
    [14]
    寇园园,陈军斌,聂向荣,等. 基于离散元方法的拉链式压裂效果影响因素分析[J]. 石油钻采工艺,2023,45(2):211–222.

    KOU Yuanyuan, CHEN Junbin, NIE Xiangrong, et al. Analyzing the factors influencing zipper fracturing based on discrete element method[J]. Oil Drilling & Production Technology, 2023, 45(2): 211–222.
    [15]
    张军,余前港,李玉伟,等. 夹层型致密储层密切割压裂多裂缝同步扩展机制[J]. 断块油气田,2023,30(3):480–487.

    ZHANG Jun, YU Qiangang, LI Yuwei, et al. Multi-fracture synchronous propagation mechanism of dense cutting fracturing in interlayer tight reservoir[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 480–487.
    [16]
    HOU Bing, CUI Zhuang. Vertical fracture propagation behavior upon supercritical carbon dioxide fracturing of multiple layers[J]. Engineering Fracture Mechanics, 2023, 277: 108913. doi: 10.1016/j.engfracmech.2022.108913
    [17]
    王辉,李勇,曹树刚,等. 基于巴西劈裂实验的层状页岩断裂特征试验研究[J]. 采矿与安全工程学报,2020,37(3):604–612.

    WANG Hui, LI Yong, CAO Shugang, et al. Experimental study on fracture characteristics of layered shale under Brazilian splitting tests[J]. Journal of Mining and Safety Engineering, 2020, 37(3): 604–612.
    [18]
    TAVALLALI A, VERVOORT. Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 313–322. doi: 10.1016/j.ijrmms.2010.01.001
    [19]
    CLAESSON J, BOHLOLI B. Brazilian test: Stress field and tensile strength of anisotropic rocks using an analytical solution[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 991–1004. doi: 10.1016/S1365-1609(02)00099-0
    [20]
    ZHOU Junping, TIAN Shifeng, ZHOU Lei, et al. Effect of sub-/super-critical CO2 and brine exposure on the mechanical and acoustic emission characteristics of shale[J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103921. doi: 10.1016/j.jngse.2021.103921
    [21]
    WANG Chenyu, GENG Jiabo, ZHANG Dongming, et al. Investigation on damage evolution law of anisotropic shale at different hydraulic pressures[J]. Energy, 2023, 282: 128944. doi: 10.1016/j.energy.2023.128944
    [22]
    位云生,林铁军,于浩,等. 基于嵌入黏聚单元法的页岩储层压裂缝网扩展规律[J]. 天然气工业,2022,42(10):74–83.

    WEI Yunsheng, LIN Tiejun, YU Hao, et al. Propagation law of fracture network in shale reservoirs based on the embeded cohesive unit method[J]. Natural Gas Industry, 2022, 42(10): 74–83.
  • Cited by

    Periodical cited type(7)

    1. 王京舰,王一妃,管磊磊,王德龙,黄琼,张海波. 神木气田产水气井井下节流参数优化设计. 断块油气田. 2017(01): 101-104 .
    2. 张丁涌. 超稠油油藏HDCS开采技术优化. 断块油气田. 2017(03): 409-412 .
    3. 王欣. 哥伦比亚Girasol油田稠油油层增产技术. 石化技术. 2017(06): 74 .
    4. 闫海俊,谢刚,巨登峰,秦忠海,刘萌. 冀中地区高含水水平井治理工艺模式. 断块油气田. 2016(05): 648-651+654 .
    5. 陈欢庆,石成方,王珏,姚尧. 稠油热采储层精细油藏描述研究进展. 断块油气田. 2016(05): 549-553 .
    6. 朱骏,蒋林,崔胜利,王海唐,陈宝. 井下高频感应电加热蒸汽发生器的研制. 石油机械. 2016(02): 84-88 .
    7. 陈会娟,李明忠,刘春苗,李威威,张艳玉. 蒸汽吞吐割缝筛管水平井井筒入流规律. 中南大学学报(自然科学版). 2016(06): 2037-2044 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (196) PDF downloads (94) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return