LIU Jinlu, LI Jun, HE Jutao, et al. A segmented prediction method for fluid density and rheology during managed pressure cementing injection stage [J]. Petroleum Drilling Techniques,2024, 52(1):45-53. DOI: 10.11911/syztjs.2024005
Citation: LIU Jinlu, LI Jun, HE Jutao, et al. A segmented prediction method for fluid density and rheology during managed pressure cementing injection stage [J]. Petroleum Drilling Techniques,2024, 52(1):45-53. DOI: 10.11911/syztjs.2024005

A Segmented Prediction Method for Fluid Density and Rheology During Managed Pressure Cementing Injection Stage

More Information
  • Received Date: November 03, 2022
  • Revised Date: December 18, 2023
  • Available Online: January 24, 2024
  • To solve the problem of difficult prediction of fluid density and rheology during the managed pressure cementing (MPC) injection stage, the measurement experiments of fluid density and rheology were designed, and the rheological model was optimized based on the experimental results. Then, a temperature-pressure coupling model was established considering the difference in fluid properties, and a segmented prediction method for fluid density and rheology was proposed. Finally, the Well X in northern Sichuan was taken as an example, and the simulation results show that the segmented method can describe the rheology of the fluid more accurately by taking the Herschel-Buckley model, the four-parameter model, and other rheological models as the preferred objects. During the MPC injection stage, the conventional calculation method can make the wellhead back pressure value low, which will greatly increase the risk of formation gas invasion. Meanwhile, the annulus temperature field predicted by different methods has little difference. The coupling effect of temperature and pressure has a great influence on the density and rheology of fluid and their variation law, which will also greatly affect the design of the annular slurry column structure and cementing effect. The research results provide a theoretical basis for the design and operation of MPC.

  • [1]
    李军,刘金璐,杨宏伟,等. 用于固井作业的控制方法、装置、处理器及存储介质:CN202310878671.7[P]. 2023-09-15.

    LI Jun, LIU Jinlu, YANG Hongwei, et al. Control methods, devices, processors, and storage media for cementing operations: CN202310878671.7[P]. 2023-09-15.
    [2]
    孙宝江,王雪瑞,王志远,等. 控制压力固井技术研究进展及展望[J]. 石油钻探技术,2019,47(3):56–61.

    SUN Baojiang, WANG Xuerui, WANG Zhiyuan, et al. Research development and outlook for managed pressure cementing technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 56–61.
    [3]
    王敬朋,张伟,吴继伟,等. 呼探1井ϕ139.7mm尾管精细动态控压固井技术[J]. 石油钻探技术,2022,50(6):92–97.

    WANG Jingpeng, ZHANG Wei, WU Jiwei, et al. Precise dynamic managed-pressure cementing technologies for ϕ139.7 mm liner cementing in Well Hutan-1[J]. Petroleum Drilling Techniques, 2022, 50(6): 92–97.
    [4]
    王雪瑞,孙宝江,王志远,等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版),2022,46(2):103–112. doi: 10.3969/j.issn.1673-5005.2022.02.010

    WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 103–112. doi: 10.3969/j.issn.1673-5005.2022.02.010
    [5]
    POLITTE M D. Invert oil mud rheology as a function of temperature and pressure[R]. SPE 13458, 1985.
    [6]
    SHERIF T, AHMED R, SHAH S, et al. Rheological behavior of oil-based drilling foams[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 873–882. doi: 10.1016/j.jngse.2015.07.022
    [7]
    王乐顶,杨远光,谢应权,等. 新型固井冲洗液评价装置适用性分析[J]. 石油钻探技术,2017,45(1):73–77.

    WANG Leding, YANG Yuanguang, XIE Yingquan, et al. Applicability of a new device for cementing flushing fluid evaluation[J]. Petroleum Drilling Techniques, 2017, 45(1): 73–77.
    [8]
    VIPULANANDAN C, MADDI A R. Characterizing the thermal, piezoresistive, rheology and fluid loss of smart foam cement slurries using artificial neural network and Vipulanandan Models[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109161. doi: 10.1016/j.petrol.2021.109161
    [9]
    滕学清,樊洪海,杨成新,等. 一种新的高温高压流变性分析模型[J]. 科学技术与工程,2015,15(34):162–167. doi: 10.3969/j.issn.1671-1815.2015.34.028

    TENG Xueqing, FAN Honghai, YANG Chengxin, et al. The research of new analysis method of rheological property under high temperature and high pressure[J]. Science Technology and Engineering, 2015, 15(34): 162–167. doi: 10.3969/j.issn.1671-1815.2015.34.028
    [10]
    徐璧华,冯青豪,谢应权,等. 考虑循环温度影响下注水泥流变性能计算方法[J]. 钻井液与完井液,2017,34(6):79–82.

    XU Bihua, FENG Qinghao, XIE Yingquan, et al. A method of calculating rheology of cement slurry affected by circulation temperature[J]. Drilling Fluid & Completion Fluid, 2017, 34(6): 79–82.
    [11]
    MAO Hui, YANG Yan, ZHANG Hao, et al. A critical review of the possible effects of physical and chemical properties of subcritical water on the performance of water-based drilling fluids designed for ultra-high temperature and ultra-high pressure drilling applica-tions[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106795. doi: 10.1016/j.petrol.2019.106795
    [12]
    谢春林,杨丽丽,蒋官澄,等. 高温高压耦合条件下油基钻井液的流变特性规律及其数学模型[J]. 钻井液与完井液,2021,38(5):568–575.

    XIE Chunlin, YANG Lili, JIANG Guancheng, et al. Rheological characteristics of oil base drilling fluids and its mathematical model under coupled HTHP conditions[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 568–575.
    [13]
    LIU Jinlu, LI Jun, LI Hui, et al. Casing force analysis during MPC injection considering the coupling effect of temperature and pressure[R]. ARMA-2023-0221, 2023.
    [14]
    李琪,王再兴,李旭阳,等. 赫-巴流体在偏心环空中的波动压力计算模型[J]. 石油学报,2016,37(9):1187–1192. doi: 10.7623/syxb201609014

    LI Qi, WANG Zaixing, LI Xuyang, et al. The computational model for surge pressure of Herschel-Bulkley fluid in eccentric annulus[J]. Acta Petrolei Sinica, 2016, 37(9): 1187–1192. doi: 10.7623/syxb201609014
    [15]
    赵胜英,鄢捷年,丁彤伟,等. 抗高温高密度水基钻井液流变性研究[J]. 天然气工业,2007,27(5):78–80.

    ZHAO Shengying, YAN Jienian, DING Tongwei, et al. Study on rheological properties of high-temperature high-density water based drilling fluid[J]. Natural Gas Industry, 2007, 27(5): 78–80.
    [16]
    CHENG Haiyong, WU Shunchuan, LI Hong, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill[J]. Construction and Building Materials, 2020, 231: 117117. doi: 10.1016/j.conbuildmat.2019.117117
    [17]
    LIU Jinlu, LI Jun, YANG Hongwei, et al. A wellbore fluid performance parameters–temperature–pressure coupling prediction model during the managed pressure cementing injection stage[J/OL]. Energy Science & Engineering: 1-18 [2023-12-18].https://doi.org/10.1002/ese3.1632.
    [18]
    张朝举,李军,杨宏伟,等. 高压盐水层控压放水模拟计算研究[J]. 钻采工艺,2021,44(3):1–4.

    ZHANG Chaoju, LI Jun, YANG Hongwei, et al. Simulation computation of pressure-controlled water drainage in high-pressure brine layer[J]. Drilling & Production Technology, 2021, 44(3): 1–4.
    [19]
    LIU Jinlu, LI Jun, LI Hui, et al. Research of casing deformation problem based on U-tube effect during cementing injection stage[R]. ARMA-2022-0388, 2022.
    [20]
    LIU Jinlu, LI Jun, YANG Hongwei, et al. Prediction model of wellbore temperature field in ultra-deep shale oil horizontal well during managed pressure cementing[C]//Computational and Experimental Simulations in Engineering. Cham: Springer, 2024: 1139-1151.
    [21]
    刘洋,陈敏,吴朗,等. 四川盆地窄密度窗口超深井控压固井工艺[J]. 钻井液与完井液,2020,37(2):214–220.

    LIU Yang, CHEN Min, WU Lang, et al. Managed pressure well cementing techniques for wells with narrow safe drilling windows in Sichuan Basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 214–220.
    [22]
    王江帅,李军,何岩峰,等. 变梯度控压钻井井控过程中井口回压变化规律[J]. 石油学报,2021,42(11):1499–1505.

    WANG Jiangshuai, LI Jun, HE Yanfeng, et al. Variation law of wellhead back pressure under well control during variable gradient managed pressure drilling[J]. Acta Petrolei Sinica, 2021, 42(11): 1499–1505.
    [23]
    魏凯,褚冰川,包莉军,等. 基于相场法的偏心环空注水泥顶替过程数值模拟[J]. 钻采工艺,2020,43(3):123–126. doi: 10.3969/J.ISSN.1006-768X.2020.03.37

    WEI Kai, CHU Bingchuan, BAO Lijun, et al. Numerical simulation of cementing displacement process in eccentric annulus based on phase field method[J]. Drilling & Production Technology, 2020, 43(3): 123–126. doi: 10.3969/J.ISSN.1006-768X.2020.03.37
  • Cited by

    Periodical cited type(9)

    1. 周芳芳,于雷涛. 凝胶堵漏颗粒的合成及性能评价. 石油化工应用. 2025(01): 110-112+120 .
    2. 艾昆,王超,王西江,张军义,董强伟,梅津滔. 适用裂缝性漏失的弹性捕集孔网桥接剂性能评价研究. 钻采工艺. 2025(02): 32-40 .
    3. 侯华丹,于雷. 基于弹性网眼体的油基钻井液堵漏体系研究与应用. 海洋石油. 2023(01): 55-58 .
    4. 王野. 复杂地质条件下弹性孔网材料堵漏性能研究. 西部资源. 2023(03): 192-194 .
    5. 于雷,李公让,王宝田,张高峰,张守文,明玉广. 一种新型亲油纤维堵漏剂的研发. 天然气工业. 2023(06): 112-118 .
    6. 孙欢,朱明明,王伟良,李治君,陈宁,刘斌. 长庆页岩油水平井华H90-3井超长水平段防漏堵漏技术. 石油钻探技术. 2022(02): 16-21 . 本站查看
    7. 李科,贾江鸿,于雷,李海斌. 页岩油钻井漏失机理及防漏堵漏技术. 钻井液与完井液. 2022(04): 446-450 .
    8. 庄艳君,肖林通,于雷,邱春阳. 丁页10井水平井钻井液技术. 四川化工. 2022(06): 37-40 .
    9. 周双君,朱立鑫,杨森,毛俊,李萧杰,黄维安. 吉木萨尔页岩油区块防漏堵漏技术. 石油钻探技术. 2021(04): 66-70 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (166) PDF downloads (98) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return