Citation: | ZHANG Longsheng, WANG Weiheng. Preparation and field test of double-shell coated proppant(DSCP) [J]. Petroleum Drilling Techniques,2023, 51(1):91-97. DOI: 10.11911/syztjs.2023014 |
The fracturing development of deep shale gas wells requires that proppants should have good compressive strength and flow conductivity. Therefore, phenol-formaldehyde resins, polyol polymers, and curing agents were taken as raw materials to prepare the double-shell coated proppant (DSCP) by a certain mass ratio with the combination of physical surface coating and chemical modification methods. The effort was to find a proppant with high compressive strength, good flow conductivity, and moderate costs. It could be applied to the fracturing of oil and gas wells with high closure pressure. For the prepared DSCP, its inner shell was mainly made of phenol-formaldehyde resins to enhance the compressive strength, and the outer shell was mainly made of inert synthetic resins to further improve the compressive strength and strengthen the flow conductivity. Laboratory experiments were carried out to evaluate the performance of DSCP, such as compressive strength and flow conductivity. The experimental results indicated that the crushing rates of DSCP at 69 and 86 MPa were 1.21% and 2.35% respectively, its flow conductivity was 3.12 mD•cm at 90 ℃ and 90 MPa. In other words, DSCP had good compressive strength and flow conductivity. Field tests showed that compared with the case of horizontal wells fractured with ceramisite, the cost of proppants could be reduced by about 30% on the premise of the same fracturing scale and technical parameters. The research result suggests that DSCP can be applied to the fracturing of wells with high closure pressure and has good prospects of popularization and application.
[1] |
张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072
ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072
|
[2] |
蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21. doi: 10.11911/syztjs.2021071
JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21. doi: 10.11911/syztjs.2021071
|
[3] |
谭晓华,丁磊,胥伟冲,等. 覆膜支撑剂导气阻水效果可视化试验研究[J]. 石油钻探技术,2021,49(3):117–123.
TAN Xiaohua, DING Lei, XU Weichong, et al. Research on visualization experiment of the gas conduction and water blocking effects of coated proppants[J]. Petroleum Drilling Techniques, 2021, 49(3): 117–123.
|
[4] |
吴百烈,杨凯,程宇雄,等. 南海低渗透储层支撑剂导流能力试验研究[J]. 石油钻探技术,2021,49(6):86–92. doi: 10.11911/syztjs.2021064
WU Bailie, YANG Kai, CHENG Yuxiong, et al. Experimental study of proppant conductivity in low permeability reservoirs in the South China Sea[J]. Petroleum Drilling Techniques, 2021, 49(6): 86–92. doi: 10.11911/syztjs.2021064
|
[5] |
梁天成,才博,蒙传幼,等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田,2021,28(3):403–407.
LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of proppant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 403–407.
|
[6] |
光新军,王敏生,韩福伟,等. 压裂支撑剂新进展与发展方向[J]. 钻井液与完井液,2019,36(5):529–533. doi: 10.3969/j.issn.1001-5620.2019.05.001
GUANG Xinjun, WANG Minsheng, HAN Fuwei, et al. Proppants for fracturing fluids: new progress made and direction of future development[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 529–533. doi: 10.3969/j.issn.1001-5620.2019.05.001
|
[7] |
董林芳,陈新阳. 自悬浮支撑剂的性能评价与现场应用[J]. 石油钻探技术,2018,46(6):90–94. doi: 10.11911/syztjs.2018144
DONG Linfang, CHEN Xinyang. Performance evaluation and field application of a self-suspending proppant[J]. Petroleum Drilling Techniques, 2018, 46(6): 90–94. doi: 10.11911/syztjs.2018144
|
[8] |
黄博,雷林,汤文佳,等. 自悬浮支撑剂清水携砂压裂增产机理研究[J]. 油气藏评价与开发,2021,11(3):459–464. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.023
HUANG Bo, LEI Lin, TANG Wenjia, et al. Stimulation mechanism of self suspension proppant in sand-carrying fracturing by water[J]. Reservoir Evaluation and Development, 2021, 11(3): 459–464. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.023
|
[9] |
李小刚,廖梓佳,杨兆中,等. 表面改性技术在压裂支撑剂领域的应用[J]. 硅酸盐通报,2018,37(9):2841–2844. doi: 10.16552/j.cnki.issn1001-1625.2018.09.027
LI Xiaogang, LIAO Zijia, YANG Zhaozhong, et al. Research on surface modified fracturing proppants[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2841–2844. doi: 10.16552/j.cnki.issn1001-1625.2018.09.027
|
[10] |
GALCHENKO R, LIU Qing, GAO Yan, et al. Completion and stimulation trends in North American unconventional plays and resulting impact on well productivity[J]. Drilling Engineering, 2021, 48(10): 1–12.
|
[11] |
XU Quan, FAN Fan, LU Zhaohui, et al. Reversible adhesion surface coating proppant[J]. Chinese Chemical Letters, 2021, 32(1): 553–556. doi: 10.1016/j.cclet.2020.02.014
|
[12] |
ZOU Yushi, MA Xinfang, ZHANG Shicheng, et al. The origins of low-fracture conductivity in soft shale formations: an experimental study[J]. Energy Technology, 2015, 3(12): 1233–1242. doi: 10.1002/ente.201500188
|
[13] |
MA Xiaoxia, TIAN Yuming, ZHOU Yi, et al. Sintering temperature dependence of low-cost, low-density ceramic proppant with high breakage resistance[J]. Materials Letters, 2016, 180: 127–129. doi: 10.1016/j.matlet.2016.04.080
|
[14] |
李祥. 一种高强度聚氨酯覆膜支撑剂的制备及性能研究[D]. 重庆: 西南大学, 2018.
LI Xiang. Study on the preparation and properties of a high strength polyurethane coating proppant[D]. Chongqing: Southwest University, 2018.
|
[15] |
徐泉, 田守嶒, 盛茂, 等. 用于非常规储层水力压裂的覆膜支撑剂及制备和应用: CN201910328777.3[P]. 2019-08-23.
XU Quan, TIAN Shouceng, SHENG Mao, et al. Film coated proppant for hydraulic fracturing of unconventional reservoirs and its preparation and application: CN201910328777.3[P]. 2019-08-23.
|
[16] |
夏冰冰. 改性碳纳米管增韧树脂覆膜砂支撑剂的制备与性能研究[D]. 西安: 西安理工大学, 2017.
XIA Bingbing. Preparation and characterization of resin coated sand proppant tougheded by modified carbon nanotubes[D]. Xi’an: Xi’an University of Technology, 2017.
|
[17] |
王萌, 杨贤友, 石阳, 等. 树脂膜包覆的高分子复合材料支撑剂颗粒及其制法与应用: CN201710897128.6[P]. 2019-04-05.
WANG Meng, YANG Xianyou, SHI Yang, et al. Preparation and application of polymer composite proppant particles coated with resin film: CN201710897128.6[P]. 2019-04-05.
|
[18] |
REDDY R B, LIANG Feng. Coated proppants and methods of making and use thereof: US 2021/0171824[P]. 2021-06-10.
|
[19] |
MONASTIRIOTIS S, MCDANIEL R R, MCCRARY A L, et al. Proppant with enhanced interparticle bonding: US 11098242 B2[P]. 2021-08-24.
|
[20] |
VO L K, PRINCE P, PARTON C R. Wet-coated proppant and methods of making and using same: US11015113 B1[P]. 2021-05-25.
|
1. |
陈雨飞,安锦涛,张辉,李军,周英操,路宗羽. 考虑钻杆接头的小井眼环空压耗计算模型. 钻井液与完井液. 2024(03): 296-304 .
![]() | |
2. |
赵前进,王恩合,陈芳,田晓伟,王品德. 吉康油田萨探1区块优快钻完井关键技术. 石油地质与工程. 2024(06): 107-111 .
![]() | |
3. |
谢鑫,窦正道,杨小敏,金晶,王媛媛,任飞. 小井眼提速技术在页岩油开发中的应用. 油气藏评价与开发. 2023(01): 83-90 .
![]() | |
4. |
代锋,孙钰淇,付利,雷正义,刘力,衡德,陈正桥. 长宁页岩气小井眼水平井钻井技术分析及发展探讨. 天然气勘探与开发. 2023(02): 118-126 .
![]() | |
5. |
王宇红,孙天玉,李鹏. 沁水盆地深部煤层气水平井定向钻进地质导向技术. 煤矿安全. 2023(06): 41-46 .
![]() | |
6. |
王媛媛,谢鑫,窦正道,赵进,付成林,徐浩,张骥. 小井眼高性能水基钻井液的研制和应用. 精细石油化工进展. 2023(04): 15-20 .
![]() | |
7. |
甘新星,董仲林,马吉龙,杜晓雨. 南川页岩气田超长水平段水平井高效下套管技术. 断块油气田. 2023(05): 874-878 .
![]() | |
8. |
汪海阁,周波. 致密砂岩气钻完井技术进展及展望. 天然气工业. 2022(01): 159-169 .
![]() | |
9. |
范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 .
![]() | |
10. |
王萍,樊佳勇,韩成福,王亮,屈展,黄海,顾甜利. 苏里格气田区小井眼二开水平井优化设计. 科学技术与工程. 2022(28): 12349-12354 .
![]() | |
11. |
张勤,倪华峰,王清臣. 长庆致密气田超长水平段钻井降摩减阻技术. 石油钻采工艺. 2022(06): 671-677 .
![]() | |
12. |
郑德帅. 可旋转钻柱定向钻进工具设计及测试. 石油钻探技术. 2021(06): 81-85 .
![]() |