LU Yipan, WEI Yong, CHEN Qiang, et al. Downhole flow rate measurement method based on the time domain integral of heat conduction [J]. Petroleum Drilling Techniques,2023, 51(1):106-114. DOI: 10.11911/syztjs.2022118
Citation: LU Yipan, WEI Yong, CHEN Qiang, et al. Downhole flow rate measurement method based on the time domain integral of heat conduction [J]. Petroleum Drilling Techniques,2023, 51(1):106-114. DOI: 10.11911/syztjs.2022118

Downhole Flow Rate Measurement Method Based on the Time Domain Integral of Heat Conduction

More Information
  • Received Date: May 17, 2022
  • Revised Date: November 21, 2022
  • Available Online: December 27, 2022
  • In light of the difficulties in measuring the flow rate of low-productivity producers in oil fields, the heat conduction effect caused by ambient fluid around the detector in the whole measurement cycle was adopted, a downhole flow rate measurement method based on time domain integral of heat transfer was put forward according to multiphase fluid thermodynamic theory. First, intermittent constant power heating was used to provide periodic energy to the detector. Then, an integral method was employed to calculate and analyze the variation of the internal temperature variation law of the detector with the external fluid flow during heating and cooling. The theoretical analysis and experimental study showed that the time domain integral area had an excellent correlation with the flow rate, and had high resolution under low flow rate condition. The problem that traditional turbine flowmeters lose their capability of detection as their turbines couldn’t be activated under low flow rate was solved with this method. The downhole flow rate measurement method based on the time domain integral of heat conduction has promoted the development of oil-water two-phase flow detection technology. It has provided a new technical means for flow rate measurement of low-productivity producers.

  • [1]
    AMINA B, AHMED H. An overview of thermal mass flowmeters applicability in oil and gas industry[J]. Energy Procedia, 2017, 141: 299–303. doi: 10.1016/j.egypro.2017.11.109
    [2]
    李群生,朱礼平,李果,等. 基于井下流量测量的微流量控制系统[J]. 石油钻探技术,2012,40(3):23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005

    LI Qunsheng, ZHU Liping, LI Guo, et al. Micro-flow control system based on downhole flow measurement[J]. Petroleum Drilling Techniques, 2012, 40(3): 23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005
    [3]
    王江帅,李军,柳贡慧,等. 气侵条件下新型双梯度钻井环空出口流量变化规律研究[J]. 石油钻探技术,2020,48(4):43–49. doi: 10.11911/syztjs.2020043

    WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Study on the change law of annular outlet flow rate in new-type dual-gradient drilling under gas cut condition[J]. Petroleum Drilling Techniques, 2020, 48(4): 43–49. doi: 10.11911/syztjs.2020043
    [4]
    杨玲智,周志平,杨海恩,等. 桥式同心井下恒流分层注水技术[J]. 石油钻探技术,2022,50(4):104–108. doi: 10.11911/syztjs.2022051

    YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Downhole constant-flow stratified water injection technology with concentric bridge[J]. Petroleum Drilling Techniques, 2022, 50(4): 104–108. doi: 10.11911/syztjs.2022051
    [5]
    王鲁海,李军,关松,等. 低流量条件下涡轮流量计的黏度响应特性[J]. 测井技术,2012,36(4):336–339. doi: 10.3969/j.issn.1004-1338.2012.04.002

    WANG Luhai, LI Jun, GUAN Song, et al. The performance of turbine flowmeter with viscosity changes under low flow condition[J]. Well Logging Technology, 2012, 36(4): 336–339. doi: 10.3969/j.issn.1004-1338.2012.04.002
    [6]
    王月明,贾华,李文涛,等. 管道对电磁流量计敏感场影响研究[J]. 仪表技术与传感器,2017(7):29–31. doi: 10.3969/j.issn.1002-1841.2017.07.009

    WANG Yueming, JIA Hua, LI Wentao, et al. Influence study of pipelines on electromagnetic flow meter sensitive field[J]. Instrument Technique and Sensor, 2017(7): 29–31. doi: 10.3969/j.issn.1002-1841.2017.07.009
    [7]
    张易农,彭静,程耀华,等. 多种超声流量计对气液两相流流量计量的试验研究[J]. 中国测试,2017,43(9):143–147. doi: 10.11857/j.issn.1674-5124.2017.09.026

    ZHANG Yinong, PENG Jing, CHENG Yaohua, et al. Experimental study on gas-liquid two-phase flow measurement by using multiple ultrasonic flowmeter[J]. China Measurement & Testing Technology, 2017, 43(9): 143–147. doi: 10.11857/j.issn.1674-5124.2017.09.026
    [8]
    张德政,王志彬,于志刚,等. 高液气比气井临界携液流量计算方法[J]. 断块油气田,2022,29(3):411–416.

    ZHANG Dezheng, WANG Zhibin, YU Zhigang, et al. Calculation method of critical liquid-carrying flow rate of high liquid-gas ratio gas well[J]. Fault-Block Oil & Gas Field, 2022, 29(3): 411–416.
    [9]
    KIM T H, KIM D K, KIM S J. Study of the sensitivity of a thermal flow sensor[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 2140–2144.
    [10]
    BEKRAOUI A, HADJADJ A. Thermal flow sensor used for thermal mass flowmeter[J]. Microelectronics Journal, 2020, 103: 104871. doi: 10.1016/j.mejo.2020.104871
    [11]
    姜兆宇. 热式质量流量计应用于井下液相流量测量研究[D]. 大庆: 东北石油大学, 2013.

    JIANG Zhaoyu. The research of thermal mass flowmeter applied to downhole liquid flow rate measurment[D]. Daqing: Northeast Petroleum University, 2013.
    [12]
    汪栋良,余厚全,杨旭辉,等. 井下恒功率热式流量计设计与实现[J]. 石油管材与仪器,2018,4(2):20–23. doi: 10.19459/j.cnki.61-1500/te.2018.02.006

    WANG Dongliang, YU Houquan, YANG Xuhui, et al. Design and implementation of downhole constant power thermal flowmeter[J]. Petroleum Tubular Goods & Instruments, 2018, 4(2): 20–23. doi: 10.19459/j.cnki.61-1500/te.2018.02.006
    [13]
    马杰. 基于恒功率原理的核电级热式质量流量计研制[D]. 合肥: 合肥工业大学, 2021.

    MA Jie. Development of nuclear thermal mass flowmeter based on constant power principle[D]. Hefei: Hefei University of Technology, 2021.
    [14]
    范宋杰,魏勇,余厚全,等. 阵列恒温差热式流量计的设计与开发[J]. 科学技术与工程,2021,21(18):7513–7518. doi: 10.3969/j.issn.1671-1815.2021.18.016

    FAN Songjie, WEI Yong, YU Houquan, et al. Design and development of a constant temperature differential thermal flowmeter with sensor array[J]. Science Technology and Engineering, 2021, 21(18): 7513–7518. doi: 10.3969/j.issn.1671-1815.2021.18.016
    [15]
    张夷非,魏勇,余厚全,等. 恒温差热式流量计影响因素模拟与试验研究[J]. 石油钻探技术,2021,49(2):121–126. doi: 10.11911/syztjs.2021023

    ZHANG Yifei, WEI Yong, YU Houquan, et al. Simulation and experimental studies on the influencing factors of a thermal flowmeter with constant temperature difference[J]. Petroleum Drilling Techniques, 2021, 49(2): 121–126. doi: 10.11911/syztjs.2021023
    [16]
    汪余景,翟军勇. 基于恒温差的热式空气流量计[J]. 仪表技术与传感器,2017(6):41–43. doi: 10.3969/j.issn.1002-1841.2017.06.011

    WANG Yujing, ZHAI Junyong. Thermal air flow meter based on constant temperature difference[J]. Instrument Technique and Sensor, 2017(6): 41–43. doi: 10.3969/j.issn.1002-1841.2017.06.011
    [17]
    JIANG Junhao, CAO Shaozhong. The design of novel thermal gas mass flowmeter[J]. Applied Mechanics and Materials, 2012, 224: 435–439. doi: 10.4028/www.scientific.net/AMM.224.435
    [18]
    戴卓勋. 基于热传导的恒温差式低产液量检测仪研制[D]. 西安: 西安石油大学, 2021.

    DAI Zhuoxun. Development of low liquid yield detector with constant temperature difference based on heat conduction[D]. Xi’an: Xi’an Shiyou University, 2021.
    [19]
    贾惠芹,戴卓勋,陈强,等. 井下恒温差热式液体流量计[J]. 石油钻采工艺,2021,43(6):817–822. doi: 10.13639/j.odpt.2021.06.020

    JIA Huiqin, DAI Zhuoxun, CHEN Qiang, et al. Downhole constant temperature difference thermal liquid flowmeter[J]. Oil Drilling & Production Technology, 2021, 43(6): 817–822. doi: 10.13639/j.odpt.2021.06.020
    [20]
    蔡晖,刘英宪,马奎前,等. 海上油藏流场评价方法[J]. 特种油气藏,2021,28(4):129–135. doi: 10.3969/j.issn.1006-6535.2021.04.018

    CAI Hui, LIU Yingxian, MA Kuiqian, et al. Study on evaluation method of flow field in offshore oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 129–135. doi: 10.3969/j.issn.1006-6535.2021.04.018
    [21]
    张夷非,魏勇,余厚全,等. 恒温差热式流量计分段PID控制的仿真与实验[J]. 测井技术,2021,45(3):284–289. doi: 10.16489/j.issn.1004-1338.2021.03.010

    ZHANG Yifei, WEI Yong, YU Houquan, et al. Simulation and experimental research on segmented PID control of constant temperature differential thermal flowmeter[J]. Well Logging Technology, 2021, 45(3): 284–289. doi: 10.16489/j.issn.1004-1338.2021.03.010
  • Related Articles

    [1]LI Ran, LI Wenzhe, ZHANG Jiayin, LIU Yang. Drilling Fluid Technology for Ultra-Large Wellbore in the Upper Part of 10 000-Meter Deep Well SDCK1[J]. Petroleum Drilling Techniques, 2024, 52(2): 93-99. DOI: 10.11911/syztjs.2024040
    [2]LI Fan, LI Daqi, JIN Junbin, ZHANG Dujie, FANG Junwei, WANG Weiji. Drilling Fluid Technology for Wellbore Stability of the Diabase Formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61-67. DOI: 10.11911/syztjs.2022041
    [3]WANG Jingpeng, ZHANG Wei, WU Jiwei, WEI Ruihua, MA Jinming, YANG Hu. Precise Dynamic Managed-Pressure Cementing Technologies for ϕ139.7 mm Liner Cementing in Well Hutan-1[J]. Petroleum Drilling Techniques, 2022, 50(6): 92-97. DOI: 10.11911/syztjs.2022021
    [4]LIU Junyi, CHAI Jinpeng, LI Guangquan, WANG Baotian. Enhanced Tight Plugging Water-Based Drilling Fluid Technology for Hard and Brittle Shales in Junggar Basin[J]. Petroleum Drilling Techniques, 2022, 50(5): 50-56. DOI: 10.11911/syztjs.2022022
    [5]LIN Jingqi, MENG Xin, LI Qingqing, CAO Zhifeng, ZHANG Kai, MU Li. Characterization Method and Application of Electrical Imaging Logging in Conglomerate Reservoir: A Case Study in Mahu Sag of Junggar Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 126-131. DOI: 10.11911/syztjs.2022059
    [6]ZHANG Xiong, YU Jin, MAO Jun, LIU Zulei. High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106
    [7]LIU Xiangjun, DING Yi, LUO Pingya, LIANG Lixi. The Impact of Drilling Unloading on Wellbore Stability of Shale Formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10-16. DOI: 10.11911/syztjs.2018005
    [8]ZHANG Xuefei, ZHANG Wei, XU Xinniu, WANG Junwen, LI Jun, RUAN Biao. High Density Oil-Based Drilling Fluid Deployed in Well H101 in the Southern Margin of the Junggar Basin[J]. Petroleum Drilling Techniques, 2016, 44(1): 34-38. DOI: 10.11911/syztjs.201601007
    [9]Ma Fengqing. Fast Drilling Technique through Igneous Rocks in Well Hashan 3[J]. Petroleum Drilling Techniques, 2014, 42(2): 112-116. DOI: 10.3969/j.issn.1001-0890.2014.02.022
    [10]Zhu Zhongxi, Liu Yingbiao, Lu Zongyu, Xiong Xudong. Increasing the Penetration Rate for Piedmont Belt of Junggar Basin[J]. Petroleum Drilling Techniques, 2013, 41(2): 34-38. DOI: 10.3969/j.issn.1001-0890.2013.02.007
  • Cited by

    Periodical cited type(7)

    1. 邬青鑫,李乐泓,任梓寒,胡清萍,张懿帆,辛文宾,徐顺义. 蒸汽辅助重力泄油转燃烧关键参数研究. 石油化工应用. 2024(11): 55-60 .
    2. 王铎宇,王欣. 亲油疏水型沙柳纤维状活性炭的制备及性能研究. 化工新型材料. 2023(05): 293-298 .
    3. 边紫薇. 我国稠油油田微生物采油进展综述. 石油地质与工程. 2021(03): 73-79 .
    4. 张传文,孟庆强,唐玄. 油页岩开采技术现状与展望. 矿产勘查. 2021(08): 1798-1805 .
    5. 巩永丰. 油砂SAGD水平井钻井液体系. 钻井液与完井液. 2018(05): 72-77 .
    6. 孙逢瑞,姚约东,李相方,陈刚,丁冠阳. 基于R-K-S方程的同心双管注多元热流体传热特征研究. 石油钻探技术. 2017(02): 107-114 . 本站查看
    7. 林晶,王新,于洋飞,张宝龙,胡新兴. 新疆油田SAGD鱼骨状水平井钻井技术. 石油钻探技术. 2016(04): 7-11 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return