Citation: | DA Yinpeng, LI Jianhui, WANG Fei, HUANG Ting, XUE Xiaojia, YU Jinzhu. Fracturing Technologies with Profile Control and Water Shutoff for Medium and High Water-Cut Wells in Ultra-Low Permeability Reservoirs of Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(3): 74-79. DOI: 10.11911/syztjs.2022012 |
Due to the influence of the high-permeability zone, the water cut will increase and reservoir stimulation results are poor when conventional refracturing is implemented in the ultra-low permeability reservoirs of Changqing Oilfield at the medium and high water-cut development stage. Focusing on the long-term injection-production development practices of typical reservoirs and infill well production data, this paper uses 3D geological modeling to analyze the stimulation mechanism of fracturing with profile control and water shutoff in medium and high water-cut oil wells. The influences of fracturing parameters on the effect of repeated stimulation were studied, and a refracturing concept hinging on “profile control and water shutoff in the pad adding stage to control water cut and dynamic multistage temporary plugging fracturing to improve single-well production” was advanced. PEG-1 gel was developed through laboratory experiments and when the mass fraction of its main agent achieved 5%-10%, gel strength would be maintained at a high level. With an optimal injection flow rate of 1.5 m3/min and an injection volume of 300-600 m3, the high-permeability zones at the fracture depth of 40-80 m could be effectively plugged. In this way, the dynamic multistage temporary plugging fracturing technology was optimized. As a result, the net pressure in the fractures was increased to above 5.0 MPa, fractures extended from the low-stress zone to the high-stress zone, and the production of the oil remaining laterally was thereby produced. Field test results showed that average daily oil production improvement per well was 1.07 t/d and water cut was reduced by 9 percentage points after the measure was implemented, which indicated that the goal of increasing oil production while controlling the water was accomplished by refracturing the medium and high water-cut wells. The proposed fracturing technology with profile control and water shutoff provides a new technical concept for the repeated stimulation of medium and high water-cut wells in ultra-low permeability reservoirs of Changqing Oilfield.
[1] |
王东琪,殷代印. 特低渗透油藏水驱开发效果评价[J]. 特种油气藏,2017,24(6):107–110. doi: 10.3969/j.issn.1006-6535.2017.06.020
WANG Dongqi, YIN Daiyin. Waterflooding performance evaluation in ultra-low permeability oil reservoir[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 107–110. doi: 10.3969/j.issn.1006-6535.2017.06.020
|
[2] |
阳晓燕. 非均质油藏水驱开发效果研究[J]. 特种油气藏,2019,26(2):152–156. doi: 10.3969/j.issn.1006-6535.2019.02.028
YANG Xiaoyan. Waterflood development effect study of heterogeneous reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 152–156. doi: 10.3969/j.issn.1006-6535.2019.02.028
|
[3] |
张玉银,赵向原,焦军. 鄂尔多斯盆地安塞地区长6储层裂缝特征及主控因素[J]. 复杂油气藏,2018,11(2):25–30.
ZHANG Yuyin, ZHAO Xiangyuan, JIAO Jun. Characteristics and major control factors of natural fractures in Chang 6 Formation in Ansai Area, Ordos Basin[J]. Complex Hydrocarbon Reservoirs, 2018, 11(2): 25–30.
|
[4] |
黄婷,苏良银,达引朋,等. 超低渗透油藏水平井储能压裂机理研究与现场试验[J]. 石油钻探技术,2020,48(1):80–84. doi: 10.11911/syztjs.2020024
HUANG Ting, SU Liangyin, DA Yinpeng, et al. Research and field test on energy storage fracturing mechanism of horizontal wells in ultra-low permeability reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 80–84. doi: 10.11911/syztjs.2020024
|
[5] |
杨浩,李新发,陈鑫,等. 低渗透气藏水平井分段压裂分段优化方法研究[J]. 特种油气藏,2021,28(1):125–129. doi: 10.3969/j.issn.1006-6535.2021.01.018
YANG Hao, LI Xinfa, CHEN Xin, et al. Study on staged optimization method of staged fracturing for horizontal wells in low-permeability gas reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 125–129. doi: 10.3969/j.issn.1006-6535.2021.01.018
|
[6] |
蔡卓林,赵续荣,南荣丽,等. 暂堵转向结合高排量体积重复压裂技术[J]. 断块油气田,2020,27(5):661–665.
CAI Zhuolin, ZHAO Xurong, NAN Rongli, et al. Volume re-fracturing technology of temporary plugging and diverting with high displacement[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 661–665.
|
[7] |
周宗良,蔡明俊,张凡磊,等. 高含水油藏多介质驱替剩余油赋存状态与时移特征[J]. 断块油气田,2020,27(5):608–612.
ZHOU Zongliang, CAI Mingjun, ZHANG Fanlei, et al. Residual oil occurrence state and time-shift characteristics of multi-media displacement of high water-cut reservoirs[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 608–612.
|
[8] |
廖月敏,付美龙,杨松林. 耐温抗盐凝胶堵水调剖体系的研究与应用[J]. 特种油气藏,2019,26(1):158–162.
LIAO Yuemin, FU Meilong, YANG Songlin. Study and application of water plugging and profile control system of heat and salt resistant gel[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 158–162.
|
[9] |
贾玉琴,郑明科,杨海恩,等. 长庆油田低渗透油藏聚合物微球深部调驱工艺参数优化[J]. 石油钻探技术,2018,46(1):75–82.
JIA Yuqin, ZHENG Mingke, YANG Haien, et al. Optimization of operational parameters for deep displacement involving polymer microspheres in low permeability reservoirs of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(1): 75–82.
|
[10] |
张莉,岳湘安,王友启. 基于非均质大模型的特高含水油藏提高采收率方法研究[J]. 石油钻探技术,2018,46(5):83–89.
ZHANG Li, YUE Xiang’an, WANG Youqi. Research on large scale heterogeneous model based EOR methods for ultra-high water cut reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(5): 83–89.
|
[11] |
侯建锋,王友净,胡亚斐,等. 特低渗透油藏动态缝作用下的合理注水技术政策[J]. 新疆石油天然气,2016,12(3):19–24. doi: 10.3969/j.issn.1673-2677.2016.03.004
HOU Jianfeng, WANG Youjing, HU Yafei, et al. Reasonable waterflooding technical policy for extra low permeability reservoirs under dynamically fractures effect[J]. Xinjiang Oil & Gas, 2016, 12(3): 19–24. doi: 10.3969/j.issn.1673-2677.2016.03.004
|
[12] |
张衍君,葛洪魁,徐田录,等. 体积压裂裂缝前端粉砂分布规律试验研究[J]. 石油钻探技术,2021,49(3):105–110. doi: 10.11911/syztjs.2021065
ZHANG Yanjun, GE Hongkui, XU Tianlu, et al. Experimental study on silt distribution law at the front end of fractures in volume fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105–110. doi: 10.11911/syztjs.2021065
|
[13] |
周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89. doi: 10.11911/syztjs.2019077
ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89. doi: 10.11911/syztjs.2019077
|
[14] |
赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075
ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075
|
1. |
刘雄伟,范胜,管金田,贺垠博. 顺北地区破碎性碳酸盐岩地层钻井液井壁稳定技术. 钻井液与完井液. 2025(01): 51-57 .
![]() | |
2. |
史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 .
![]() | |
3. |
李凡,李大奇,汤志川,高伟. 破碎地层护壁防塌剂研制及性能评价. 精细石油化工. 2024(02): 10-14 .
![]() | |
4. |
胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向. 石油钻探技术. 2024(02): 58-65 .
![]() | |
5. |
杨玉贵,蔡文军,幸雪松,邢希金,林海. 渤中区块破碎性地层井壁失稳机理及对策. 科学技术与工程. 2023(22): 9476-9483 .
![]() | |
6. |
王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 .
![]() | |
7. |
刘锋报,罗霄,晏智航,张顺从,孙爱生,董樱花. 强封堵水基钻井液在塔里木油田的应用. 钻采工艺. 2023(04): 125-130 .
![]() | |
8. |
马永生,蔡勋育,云露,李宗杰,李慧莉,邓尚,赵培荣. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发. 2022(01): 1-17 .
![]() | |
9. |
MA Yongsheng,CAI Xunyu,YUN Lu,LI Zongjie,LI Huili,DENG Shang,ZHAO Peirong. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China. Petroleum Exploration and Development. 2022(01): 1-20 .
![]() |
|
10. |
张亚云,李大奇,高书阳,林永学,曾义金. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析. 断块油气田. 2022(02): 256-260 .
![]() | |
11. |
张锐尧,李军,柳贡慧,郝希宁,何玉发,周云健,王宁. 基于空心球破碎概率的双梯度钻井井筒压力预测. 断块油气田. 2022(02): 278-284 .
![]() | |
12. |
赵宁,尹飞,韩梦天,贾利春,廖智海,史彪彬. 基于相场法的井壁微裂缝扩展规律及坍塌机理研究. 钻采工艺. 2022(02): 8-14 .
![]() | |
13. |
王伟吉,李大奇,金军斌,徐江,张杜杰. 顺北油气田破碎性地层井壁稳定技术难题与对策. 科学技术与工程. 2022(13): 5205-5212 .
![]() | |
14. |
喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 .
![]() | |
15. |
张冬明. 松辽盆地中上部水敏性地层高密度油基钻井液研究. 西部探矿工程. 2022(07): 83-87 .
![]() | |
16. |
李科,赵怀珍,李秀灵,周飞. 抗高温高性能水基钻井液及其在顺北801X井的应用. 钻井液与完井液. 2022(03): 279-284 .
![]() | |
17. |
滕春鸣,甄剑武,罗会义,蒋思臣. 一种强吸附疏水改性纳米SiO_2封堵剂. 钻井液与完井液. 2022(03): 307-312 .
![]() | |
18. |
朱金智,杨学文,刘洪涛,杨成新,张绍俊,罗春芝. 塔河南岸跃满区块三叠系防塌钻井液研究与应用. 钻井液与完井液. 2022(03): 319-326 .
![]() | |
19. |
刘湘华,刘彪,杜欢,王沫. 顺北油气田断裂带超深水平井优快钻井技术. 石油钻探技术. 2022(04): 11-17 .
![]() | |
20. |
胡清富,刘春来,牟少敏,李增乐,司小东. 伊拉克东巴油田Tanuma组泥页岩高效防塌钻井液技术. 石油钻探技术. 2022(04): 76-82 .
![]() | |
21. |
孔勇. 地层环境响应封堵材料研究与应用. 钻井液与完井液. 2022(06): 677-684 .
![]() | |
22. |
吴雄军,林永学,王显光,刘金华,李大奇. 顺北5-7井超深层奥陶系地层油基钻井液技术. 长江大学学报(自然科学版). 2021(01): 100-106 .
![]() | |
23. |
孔勇. 温敏变形封堵剂合成研究与应用. 钻井液与完井液. 2021(06): 677-683 .
![]() | |
24. |
金军斌,欧彪,张杜杰,王希勇,李大奇,王逸. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望. 长江大学学报(自然科学版). 2021(06): 47-54 .
![]() | |
25. |
吴雄军,林永学,宋碧涛,金军斌,董晓强. 顺北油气田奥陶系破碎性地层油基钻井液技术. 钻井液与完井液. 2020(06): 701-708 .
![]() |