Citation: | KUANG Lixin, TAO Qian. Cementing Technology Using a Nitrogen-Filled Foamed Cement Slurry for Horizontal Shale Gas Wells in the Eastern Chongqing Area[J]. Petroleum Drilling Techniques, 2022, 50(3): 39-45. DOI: 10.11911/syztjs.2021103 |
Normal pressure horizontal shale gas wells in the eastern Chongqing area are prone to leakage during the process of production casing cementing, and often encounter sustained casing pressure (SCP) after staged fracturing. To solve these technical difficulties, this paper studied the cementing technology of mechanical nitrogen-filled foamed cement slurry. Foaming agents and foam stabilizers were selected in the design of low-density foamed cement slurry. Based on the high-pressure gas equation of state, the whole-process pressure balancing of foamed cement slurry and the design of the slurry column structure were performed, and a density calculation model of foamed cement slurry under wellbore pressure was built. In this way, a cementing technology using mechanical nitrogen-filled foamed cement slurry was developed. Specifically, the density of low-density foamed cement slurry ranged from 0.80 to 1.55 kg/L, and the half-life of foam in cement slurry was 33.8 h, with the elastic modulus of foamed cement paste being 4.6 GPa. The residual strain of foamed cement paste under cyclic loading was 0.21%, which demonstrated its good mechanical properties. The whole-process pressure-balancing cementing technology and the slurry column structure design of low-density foamed cement with staged gas injection could meet the requirements of cementing for leakage prevention. When the technology was applied to 20 horizontal shale gas wells in the eastern Chongqing area, no leakage occurred during the construction process, with an excellent rate of cementing quality of 100%, and there was no SCP after fracturing. Research and field applications indicate that the cementing technology using mechanical nitrogen-filled foamed cement slurry can solve the leakage problem of horizontal shale gas wells in the eastern Chongqing area during the production casing cementing, and the foamed cement paste has good elastic deformation, which can prevent SCP after fracturing.
[1] |
方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发,2019,9(5):1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001
FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in Southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001
|
[2] |
魏力民,王岩,张天操,等. 页岩气富集与高产主控因素:以川南地区五峰组—龙马溪组为例[J]. 断块油气田,2020,27(6):700–704.
WEI Limin, WANG Yan, ZHANG Tiancao, et al. Main control factors of enrichment and high-production of shale gas:a case study of Wufeng-Longmaxi Formation in Southern Sichuan[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 700–704.
|
[3] |
彭兴,周玉仓,龙志平,等. 南川地区页岩气水平井优快钻井技术进展及发展建议[J]. 石油钻探技术,2020,48(5):15–20. doi: 10.11911/syztjs.2020057
PENG Xing, ZHOU Yucang, LONG Zhiping, et al. Progress and development recommendations for optimized fast drilling technology in shale gas horizontal wells in the Nanchuan Area[J]. Petroleum Drilling Techniques, 2020, 48(5): 15–20. doi: 10.11911/syztjs.2020057
|
[4] |
左京杰, 张振华, 姚如钢, 等. 川南页岩气地层油基钻井液技术难题及案例分析[J]. 钻井液与完井液,2020,37(3):294–300.
ZUO Jingjie, ZHANG Zhenhua, YAO Rugang, et al. Technical difficulties and case study of oil base drilling fluid operation in shale gas drilling in south Sichuan[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 294–300.
|
[5] |
李传武,兰凯,杜小松,等. 川南页岩气水平井钻井技术难点与对策[J]. 石油钻探技术,2020,48(3):16–21.
LI Chuanwu, LAN Kai, DU Xiaosong, et al. Difficulties and countermeasures in horizontal well drilling for shale gas in Southern Sichuan[J]. Petroleum Drilling Techniques,, 2020, 48(3): 16–21.
|
[6] |
陶谦,陈星星. 四川盆地页岩气水平井B环空带压原因分析与对策[J]. 石油钻采工艺,2017,39(5):588–593.
TAO Qian, CHEN Xingxing. Causal analysis and countermeasures on b sustained casing pressure of shale-gas horizontal wells in the Sichuan Basin[J]. Oil Drilling & Production Technology, 2017, 39(5): 588–593.
|
[7] |
陈雷,陈会年,张林海,等. JY 页岩气田水平井预防环空带压固井技术[J]. 石油钻采工艺,2019,41(2):152–159.
CHEN Lei, CHEN Huinian, ZHANG Linhai, et al. A cementing technology for preventing the annulus pressure of horizontal wells in JY Shale Gasfield[J]. Oil Drilling & Production Technology, 2019, 41(2): 152–159.
|
[8] |
谭春勤,丁士东,刘伟,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术,2011,39(3):53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
TAN Chunqin, DING Shidong, LIU Wei, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Petroleum Drilling Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
|
[9] |
刘洋,严海兵,余鑫,等. 井内压力变化对水泥环密封完整性的影响及对策[J]. 天然气工业,2014,34(4):95–98.
LIU Yang, YAN Haibing, YU Xin, et al. Negative impacts of borehole pressure change on cement sheath sealing integrity and countermeasures[J]. Natural Gas Industry, 2014, 34(4): 95–98.
|
[10] |
肖京男,刘建,桑来玉,等. 充气泡沫水泥浆固井技术在焦页9井的应用[J]. 断块油气田,2016,23(6):835–837.
XIAO Jingnan, LIU Jian, SANG Laiyu, et al. Application of foamed cement slurry to Jiaoye-9 Well[J]. Fault-Block Oil & Field, 2016, 23(6): 835–837.
|
[11] |
肖京男,方春飞,周仕明,等. 泡沫分数对泡沫水泥性能的影响规律分析[J]. 钻井液与完井液,2015,32(5):69–72.
XIAO Jingnan, FANG Chunfei, ZHOU Shiming, et al. Effect of gas volume fraction in foam on performance of foam cement slurry[J]. Drilling Fluid & Completion Fluid, 2015, 32(5): 69–72.
|
[12] |
周仕明,李根生,初永涛. 防气窜固井分段设计方法[J]. 石油钻探技术,2013,41(5):52–55.
ZHOU Shiming, LI Gensheng, CHU Yongtao. Sectional design for anti-gas channeling cementing[J]. Petroleum Drilling Techniques, 2013, 41(5): 52–55.
|
[13] |
孙坤忠,陶谦,周仕明,等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术,2015,43(3):55–60.
SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the Dingshan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55–60.
|
[14] |
DRECQ P, PARCEVAUX P A. A single technique solves gas migration problems across a wide range of conditions[R]. SPE 17629, 1988.
|
[15] |
DEBRUIJN G G, SISO C, REINHEIMER D. Flexible cement improves wellbore integrity for steam assisted gravity drainage (SAGD) wells[R]. SPE 117859, 2008.
|
[16] |
孙宝江,王雪瑞,王志远,等. 控制压力固井技术研究进展及展望[J]. 石油钻探技术,2019,47(3):56–61. doi: 10.11911/syztjs.2019066
SUN Baojiang, WANG Xuerui, WANG Zhiyuan, et al. Research development and outlook for managed pressure cementing technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 56–61. doi: 10.11911/syztjs.2019066
|
[17] |
李早元,郭小阳,罗发强,等. 油井水泥环降脆增韧作用机理研究[J]. 石油学报,2008,29(3):438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025
LI Zaoyuan, GUO Xiaoyang, LUO Faqiang, et al. Research on mechanism of increasing flexibility and decreasing brittleness of cement sheath in oil well[J]. Acta Petrolei Sinica, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025
|
[18] |
刘仍光,周仕明,陶谦,等. 掺橡胶乳液和弹性粒子柔性油井水泥石的微结构[J]. 硅酸盐学报,2015,43(10):1475–1482.
LIU Rengguang, ZHOU Shiming, TAO Qian, et al. Micro-structure of flexible oilwell cement stone mixed with latex and elastic particle[J]. Journal of the Chinese Ceramic Society, 2015, 43(10): 1475–1482.
|
[19] |
DAVIES D R, HARTOG J J, COBBETT J S. Foamed cement: a cement with many applications[R]. SPE 9598, 1981.
|
[20] |
JEAN D, FERRIERE R. Foamed cement characterization under downhole conditions and its impact on job design[J]. SPE Production Engineering, 1991, 6(3): 297–304. doi: 10.2118/19935-PA
|
[21] |
GUILLOT D J, BASTARD E L. Learnings from foamed cement job simulations[R]. OTC 23666, 2012.
|
[22] |
GREEN K, JOHNSON P G, HOBBERSTAD R. Foam cementing on the eldfisk field: a case study[R]. SPE 79912, 2003.
|
[23] |
DOOPLY M, ELHANCHA A, BRUIJN G D, et al. Application of real-time process control and engineering software simulation in foam cementing[R]. SPE 168033, 2014.
|
1. |
杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 .
![]() | |
2. |
李硕轩,赵东睿,高红茜,刘誉. 超高分子聚合物驱提高高盐稠油油藏采收率机理及现场应用. 钻采工艺. 2023(01): 132-139 .
![]() | |
3. |
白佳佳,顾添帅,司双虎,陶磊,张娜,史文洋,朱庆杰. 高盐稠油油藏聚合物驱提高采收率研究. 常州大学学报(自然科学版). 2023(05): 60-66 .
![]() |