JIAN Xu, LI Gao, WANG Jun, HAN Xu, HUANG Bing, WANG Songtao. Acoustic Advance Ranging Method in Gas Drilling and Its Numerical Simulation[J]. Petroleum Drilling Techniques, 2022, 50(3): 132-138. DOI: 10.11911/syztjs.2022016
Citation: JIAN Xu, LI Gao, WANG Jun, HAN Xu, HUANG Bing, WANG Songtao. Acoustic Advance Ranging Method in Gas Drilling and Its Numerical Simulation[J]. Petroleum Drilling Techniques, 2022, 50(3): 132-138. DOI: 10.11911/syztjs.2022016

Acoustic Advance Ranging Method in Gas Drilling and Its Numerical Simulation

More Information
  • Received Date: April 13, 2021
  • Revised Date: January 14, 2022
  • Accepted Date: March 08, 2022
  • Available Online: April 07, 2022
  • The safety of gas drilling is greatly influenced by local geological conditions of reservoirs. It is difficult to identify formation reflection signals in gas drilling due to the influence of noise generated from gas. Therefore, a near-bit impact source sub while drilling was designed, and a method of acoustic advance ranging for gas drilling was proposed on the basis of the self-excitation and self-reception principle of seismic waves. In this way, measurement accuracy could be raised, and the uncertainty of lithological interfaces ahead of the bit could be reduced. Specifically, the attenuation effect of polytetrafluoroethylene (PTFE) on vibration coda waves was analyzed through an impact test; the feasibility of the acoustic advance ranging method in gas drilling was verified through numerical simulations, and the influence of detection distance on the amplitude of reflected waves was analyzed. The impact test revealed that the coda waves of vibration waves on the hollow cylinder were significantly attenuated upon the use of PTFE. Numerical simulations indicated that the boundary conditions of a perfectly matched layer (PML) can effectively eliminate the interference of boundary reflection of the model, and the ranging error calculated from the arrival time of reflected P-waves was 1 m. In addition, the relative intensity of reflected P-waves shows a gradual increase, and the amplitude of reflected waves decreases greatly as the increase in detection distance. The research results verify the feasibility of detecting lithological interfaces ahead of the bit by near-bit impact sources and provide a new idea for the development of acoustic advance detection technology while drilling in gas drilling.

  • [1]
    李皋,李诚,孟英峰,等. 气体钻井随钻安全风险识别与监控[J]. 天然气工业,2015,35(7):66–72. doi: 10.3787/j.issn.1000-0976.2015.07.010

    LI Gao, LI Cheng, MENG Yingfeng, et al. While-drilling safety risk identification and monitoring in air drilling[J]. Natural Gas Industry, 2015, 35(7): 66–72. doi: 10.3787/j.issn.1000-0976.2015.07.010
    [2]
    ESMERSOY C,HAWTHORN A,李辉,等. 降低钻头前的不确定性[J]. 国外测井技术,2016,37(3):61–68.

    ESMERSOY C, HAWTHORN A, LI Hui, et al. To reduce the uncertainty of the drill bit[J]. World Well Logging Technology, 2016, 37(3): 61–68.
    [3]
    杨书博,乔文孝,赵琪琪,等. 随钻前视声波测井钻头前方声场特征研究[J]. 石油钻探技术,2021,49(2):113–120. doi: 10.11911/syztjs.2021020

    YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, et al. The characteristics of the acoustic field ahead of the bit in“look-ahead”acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113–120. doi: 10.11911/syztjs.2021020
    [4]
    苏义脑,徐义,盛利民,等. 随钻地震技术研究进展[J]. 石油钻采工艺,2010,32(5):1–7. doi: 10.3969/j.issn.1000-7393.2010.05.001

    SU Yinao, XU Yi, SHENG Limin, et al. Review on study progress of seismic while drilling technology[J]. Oil Drilling & Production Technology, 2010, 32(5): 1–7. doi: 10.3969/j.issn.1000-7393.2010.05.001
    [5]
    ESMERSOY C, UNDERHILL W, HAWTHORN A. Seismic measurement while drilling: Conventional borehole seismic on LWD[R]. SPWLA-2001-RR, 2001.
    [6]
    EL TOKHY M, FAHMY A, EL MARAKEBY H, et al. Seismic while-drilling, real-data reposition the well in the seismic volume and improve the accuracy of the depth prognosis of the target events[R]. SPE 176763, 2015.
    [7]
    史鸿祥,李辉,郑多明,等. 基于随钻地震测井的地震导向钻井技术:以塔里木油田哈拉哈塘区块缝洞型储集体为例[J]. 石油勘探与开发,2016,43(4):662–668. doi: 10.1016/S1876-3804(16)30085-4

    SHI Hongxiang, LI Hui, ZHENG Duoming, et al. Seismic guided drilling technique based on seismic while drilling (SWD): a case study of fracture-cave reservoirs of Halahatang block, Tarim Oilfield, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 662–668. doi: 10.1016/S1876-3804(16)30085-4
    [8]
    药晓江,卢华涛,尚捷,等. 随钻测井仪流道转换器优化设计与数值分析[J]. 石油钻探技术,2021,49(5):121–126. doi: 10.11911/syztjs.2021069

    YAO Xiaojiang, LU Huatao, SHANG Jie, et al. Optimization design and numerical analysis of flow passage converters in LWD tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121–126. doi: 10.11911/syztjs.2021069
    [9]
    高永德,刘鹏,杜超,等. 随钻地震技术在莺歌海盆地高温高压地层钻井中的应用[J]. 石油钻探技术,2020,48(4):63–71. doi: 10.11911/syztjs.2020049

    GAO Yongde, LIU Peng, DU Chao, et al. The application of seismic while drilling in high temperature, high pressure reservoirs of the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 63–71. doi: 10.11911/syztjs.2020049
    [10]
    CONSTABLE M V, ANTONSEN F, STALHEIM S O, et al. Looking ahead of the bit while drilling: from vision to reality[J]. Petrophysics, 2016, 57(5): 426–446.
    [11]
    HARTMANN A, GOREK M, FULDA C, et al. Early bed boundary detection while drilling-testing and application of a new resistivity device[R]. IPTC-12063-MS, 2008.
    [12]
    WU H H, GOLLA C, PARKER T, et al. A new ultra-deep azimuthal electromagnetic LWD sensor for reservoir insight[R]. SPWLA-2018-X, 2018.
    [13]
    黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
    [14]
    ANCHLIYA A. A review of seismic while drilling (SWD) techniques: A journey from 1986 to 2005[R]. SPE 100352, 2006.
    [15]
    KOLLE J J, THEIMER K. Seismic-while-drilling using a swept impulse source[R]. SPE 92114, 2005.
    [16]
    JIAN Xu, LI Hongtao, LI Gao, et al. Lithological interface detection using an impact source[J]. Shock and Vibration, 2020, 2020: 4189419.
    [17]
    LIU Qinghuo, SCHOEN E, DAUBE F, et al. A three‐dimensional finite difference simulation of sonic logging[J]. The Journal of the Acoustical Society of America, 1996, 100(1): 72–79. doi: 10.1121/1.415869
    [18]
    CARCIONE J M, POLETTO F, GEI D. 3-D wave simulation in anelastic media using the Kelvin-Voigt constitutive equation[J]. Journal of Computational Physics, 2004, 196(1): 282–297. doi: 10.1016/j.jcp.2003.10.024
    [19]
    ANGONA F A. Drill string vibration attenuation and its effect on a surface oscillator drilling system[J]. Journal of Engineering for Industry, 1965, 87(2): 110–114. doi: 10.1115/1.3670771
    [20]
    WANG Yun, LU Jun, SHI Ying, et al. PS-wave Q estimation based on the P-wave Q values[J]. Journal of Geophysics and Engineering, 2009, 6(4): 386–389. doi: 10.1088/1742-2132/6/4/006
  • Related Articles

    [1]WANG Tao, LIU Fengbao, LUO Wei, YAN Zhihang, LU Haiying, GUO Bin. The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28-33. DOI: 10.11911/syztjs.2020080
    [2]CHAI Long, LIN Yongxue, JING Junbin, HAN Zixuan. Anti-Gas Channeling Technology with Gas-Block Plug for High Temperature and High Pressure Wells in the Periphery of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 40-45. DOI: 10.11911/syztjs.2018111
    [3]Wang Jianquan, Liu Guoxiang, Wang Hong, Li Jianye, Li Wensheng, Zhou Xiaofei. Critical Tieback Equipment Techniques for Preventing Gas Channeling during Liner Cementing in Ultrahigh Pressure Wells[J]. Petroleum Drilling Techniques, 2015, 43(3): 125-129. DOI: 10.11911/syztjs.201503023
    [4]Liang Dan, Lü Xin, Jiang Shanshan, Liang Shoucheng, Feng Guozhi. The Technology of Classified Combination of Deep Profile Control in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(2): 104-109. DOI: 10.11911/syztjs.201502018
    [5]Dou Hongmei, Wang Longfei. An Inactive Water-Wet Film for Paraffin Inhibition in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(5): 93-97. DOI: 10.3969/j.issn.1001-0890.2013.05.018
    [6]Bao Hongzhi, Yang Shunhui, Hou Lizhong, He Qingshui, Xiao Chao. Pipe Sticking Prevention Measures in F Formation of Iranian Y Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 67-72. DOI: 10.3969/j.issn.1001-0890.2013.03.013
    [7]Zhang Shuo, Jiang Guancheng, Guo Haitao, Tang Xinguo, Jin Haifeng. Development of New Film-Forming Agent for Drilling Fluids and Application in Chenghai Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(2): 44-48. DOI: 10.3969/j.issn.1001-0890.2013.02.009
    [8]Chang Lei. Causes and Prevention of Spiral Borehole in Haita Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(5): 63-66. DOI: 10.3969/j.issn.1001-0890.2012.05.014
    [9]Gu Jun, Yang Yaxin, Zhang Pengwei, Gao Yutang, Li Yanwei, Yu Sanyue. Principle of Anti-Channeling Cementing Technology with MTA Method and Field Applications in Daqing/Shengli/Henan Oilfields[J]. Petroleum Drilling Techniques, 2012, 40(1): 17-21. DOI: 10.3969/j.issn.1001-0890.2012.01.004
  • Cited by

    Periodical cited type(5)

    1. 曲从锋,尹宜勇,刘斌辉,王岩,郭新超,白翰钦. 井筒超声波空化清洗距离影响因素试验研究. 石油机械. 2025(03): 10-17 .
    2. 徐月霞,宋颐,徐波,谷长雄. 射流冲击工具流场模拟及喷嘴参数优化. 机械设计与研究. 2025(02): 109-115 .
    3. 刘锴沅. 连续管套管除垢空化射流喷头优化设计与应用. 石油机械. 2024(02): 44-49 .
    4. 周照恒,李玉星,林敏,郭宏帅,王建夫. 盐穴储气库注采气井脖颈收缩原因及预防治理措施. 油气储运. 2024(11): 1313-1319 .
    5. 李朝阳,陶立波,张跃,刘威,汲广麟,王俊博. 装有延长抗磨损时间和减缓压力衰减的硬质合金喷嘴清洗管井工具. 石油钻采工艺. 2024(03): 386-394 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (323) PDF downloads (51) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return