LI Xinyong, LI Xiao, ZHAO Bing, WANG Kun, GOU Bo. Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068
Citation: LI Xinyong, LI Xiao, ZHAO Bing, WANG Kun, GOU Bo. Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068

Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield

More Information
  • Received Date: December 20, 2020
  • Revised Date: September 12, 2021
  • Accepted Date: November 10, 2021
  • Available Online: November 16, 2021
  • The target formation of Well S in Shunbei Oilfield is a typical ultra-deep fault-karst carbonate reservoir. Due to the complex engineering and geological conditions and wellbore conditions, acid fracturing is confronted with great challenges. In light of above difficulties in reservoir stimulation, a set of compound acid fracturing technologies was proposed by "centralized treatment by backfilling + acid damage to reduce fracture pressure + shallow pipe string + flow rate increase by weighted fracturing fluid + pad fluid fracturing + alternative injection for high conductivity fracture + autogenous acid to connect the far fault-karst". A set of acid fracturing fluid systems was optimized for resistance to ultra-high temperature by tests, included polymer fracturing fluid at 180 ℃, weighted guar gum fracturing fluid at 160 ℃, crosslinking acid at 160 ℃, and autogenous acid. Then, an optimized large-scale acid fracturing treatment plan was made based on recommendations for working fluid scales by numerical simulation. The recommended scale of fracturing fluid was 1 000–1 200 m3 and the scale of acid fluid was 800–1 000 m3. The field test showed a significant decrease in the wellhead pressure with weighted fracturing fluid, which was 7% lower than that with polymer fracturing fluid under the same injection rate. After the large-scale acid fracturing of Well S, the test production of natural gas was 10.45 × 104 m3/d, which made a breakthrough in the exploration of the Shunbei No. 4 fault zone and provided valuable guidance for the large-scale acid fracturing design of similar reservoirs.
  • [1]
    李映涛,漆立新,张哨楠,等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报,2019,40(12):1470–1484. doi: 10.7623/syxb201912006

    LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the middle and lower Ordovician fault-karst reservoir in Shunbei Area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470–1484. doi: 10.7623/syxb201912006
    [2]
    鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质,2015,36(3):347–355. doi: 10.11743/ogg20150301

    LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-Karst carbonate reservoirs in Tahe Area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347–355. doi: 10.11743/ogg20150301
    [3]
    马庆佑,沙旭光,李玉兰,等. 塔中顺托果勒区块走滑断裂特征及控油作用[J]. 石油实验地质,2012,34(2):120–124. doi: 10.3969/j.issn.1001-6112.2012.02.003

    MA Qingyou, SHA Xuguang, LI Yulan, et al. Characteristics of strike-slip fault and its controlling on oil in Shuntuoguole Region, middle Tarim Basin[J]. Petroleum Geology and Experiment, 2012, 34(2): 120–124. doi: 10.3969/j.issn.1001-6112.2012.02.003
    [4]
    李相文,冯许魁,刘永雷,等. 塔中地区奥陶系走滑断裂体系解剖及其控储控藏特征分析[J]. 石油物探,2018,57(5):764–774. doi: 10.3969/j.issn.1000-1441.2018.05.016

    LI Xiangwen, FENG Xukui, LIU Yonglei, et al. Characteristic of the strike-slip faults system and effect of faults on reservoir and hydrocarbon accumulation in Tazhong Area, China[J]. Geophysical Prospecting for Petroleum, 2018, 57(5): 764–774. doi: 10.3969/j.issn.1000-1441.2018.05.016
    [5]
    刘洪涛,刘举,刘会锋,等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业,2020,40(11):76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009
    [6]
    丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
    [7]
    方俊伟,董晓强,李雄,等. 顺北油田断溶体储集层特征及损害预防[J]. 新疆石油地质,2021,42(2):201–205.

    FANG Junwei, DONG Xiaoqiang, LI Xiong, et al. Characteristics and damage prevention of fault-karst reservoirs in Shunbei Oil-field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 201–205.
    [8]
    马乃拜,金圣林,杨瑞召,等. 塔里木盆地顺北地区断溶体地震反射特征与识别[J]. 石油地球物理勘探,2019,54(2):398–403.

    MA Naibai, JIN Shenglin, YANG Ruizhao, et al. Seismic response characteristics and identification of fault-karst reservoir in Shunbei Area, Tarim Basin[J]. Oil Geophysical Prospecting, 2019, 54(2): 398–403.
    [9]
    李新勇,耿宇迪,刘志远,等. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术,2020,48(6):88–93. doi: 10.11911/syztjs.2020074

    LI Xinyong, GENG Yudi, LIU Zhiyuan, et al. An experimental study on evaluation methods for fracturing effect of fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88–93. doi: 10.11911/syztjs.2020074
    [10]
    张文彪,段太忠,李蒙,等. 塔河油田托甫台区奥陶系断溶体层级类型及表征方法[J]. 石油勘探与开发,2021,48(2):314–325.

    ZHANG Wenbiao, DUAN Taizhong, LI Meng, et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai, Tahe Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2): 314–325.
    [11]
    李冬梅,柳志翔,李林涛,等. 顺北超深断溶体油气藏完井技术[J]. 石油钻采工艺,2020,42(5):600–605.

    LI Dongmei, LIU Zhixiang, LI Lintao, et al. Well completion technologies for the ultra-deep fault-dissolved oil and gas reservoir in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2020, 42(5): 600–605.
    [12]
    欧阳健,王贵文. 电测井地应力分析及评价[J]. 石油勘探与开发,2001,28(3):92–94. doi: 10.3321/j.issn:1000-0747.2001.03.028

    OUYANG Jian, WANG Guiwen. In-situ stress analysis and evaluation by using of electric logging[J]. Petroleum Exploration and Development, 2001, 28(3): 92–94. doi: 10.3321/j.issn:1000-0747.2001.03.028
    [13]
    赵旭阳,郭海敏,李紫璇,等. 基于测井横波预测的地应力场及岩石力学参数建模[J]. 断块油气田,2021,28(2):235–240.

    ZHAO Xuyang, GUO Haimin, LI Zixuan, et al. Modeling of in-situ stress field and rock mechanics parameters based on logging shear wave prediction[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 235–240.
    [14]
    王洋,赵兵,袁清芸,等. 顺9井区致密油藏水平井一体化开发技术[J]. 石油钻探技术,2015,43(4):48–52.

    WANG Yang, ZHAO Bing, YUAN Qingyun, et al. Integrated techniques in tight reservoir development for horizontal wells in Block Shun 9[J]. Petroleum Drilling Techniques, 2015, 43(4): 48–52.
    [15]
    曲海,李根生,刘营. 拖动式水力喷射分段压裂工艺在筛管水平井完井中的应用[J]. 石油钻探技术,2012,40(3):83–86. doi: 10.3969/j.issn.1001-0890.2012.03.017

    QU Hai, LI Gensheng, LIU Ying. The application of dragged multi-stage hydrojet-fracturing in horizontal well with screen pipe completion[J]. Petroleum Drilling Techniques, 2012, 40(3): 83–86. doi: 10.3969/j.issn.1001-0890.2012.03.017
    [16]
    李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92. doi: 10.11911/syztjs.2020018

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92. doi: 10.11911/syztjs.2020018
    [17]
    张雄,耿宇迪,焦克波,等. 塔河油田碳酸盐岩油藏水平井暂堵分段酸压技术[J]. 石油钻探技术,2016,44(4):82–87.

    ZHANG Xiong, GENG Yudi, JIAO Kebo, et al. The technology of multi-stage acid fracturing in horizontal well for carbonate reservoir by temporary plugging ways in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(4): 82–87.
    [18]
    曾凡辉,郭建春,赵金洲. 酸损伤降低砂岩储层破裂压力实验研究[J]. 西南石油大学学报(自然科学版),2009,31(6):93–96.

    ZENG Fanhui, GUO Jianchun, ZHAO Jinzhou. The experiment research of acid damage to reduce sandstone reservoirs fracture pressure[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(6): 93–96.
    [19]
    王松,邓宽海,于会永,等. 玛湖凹陷百口泉组砾岩储层泡酸后岩石损伤及压裂泵压下降机理[J]. 科学技术与工程,2021,21(21):8841–8850.

    WANG Song, DENG Kuanhai, YU Huiyong, et al. Rock damage and fracturing pump pressure reduction mechanism of conglomerate reservoirs in Baikouquan Formation of Mahu Sag after acidizing treatment[J]. Science Technology and Engineering, 2021, 21(21): 8841–8850.
    [20]
    郭建春,苟波,秦楠,等. 深层碳酸盐岩储层改造理念的革新:立体酸压技术[J]. 天然气工业,2020,40(2):61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007

    GUO Jianchun, GOU Bo, QIN Nan, et al. An innovative concept on deep carbonate reservoir stimulation: three-dimensional acid fracturing technology[J]. Natural Gas Industry, 2020, 40(2): 61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007
    [21]
    苏雄,杨明合,陈伟峰,等. 顺北一区小井眼超深井井筒温度场特征研究与应用[J]. 石油钻探技术,2021,49(3):67–74. doi: 10.11911/syztjs.2021006

    SU Xiong, YANG Minghe, CHEN Weifeng, et al. Study and application of wellbore temperature field characteristics in the ultra-deep slim-hole wells in the Shunbei No.1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67–74. doi: 10.11911/syztjs.2021006
  • Cited by

    Periodical cited type(14)

    1. 刘承诚. 基于KPI的裸眼封隔器应用效能评价. 石油矿场机械. 2025(01): 19-23 .
    2. 刘豇瑜,任登峰,秦世勇,张键,晏楠,刘洋. 塔里木盆地富满油田超深缝洞型碳酸盐岩储层立体酸压技术. 大庆石油地质与开发. 2025(03): 77-84 .
    3. 李冬梅,李会会,朱苏阳. 大尺度离散裂缝的渗透率应力敏感研究——以顺北油田为例. 断块油气田. 2024(01): 147-153 .
    4. 柳志翔,邹伟,王冲,徐迎春. 新型超高温高压井裸眼封隔器研制与应用. 工程机械. 2024(04): 23-29+8 .
    5. 丁士东,庞伟,周珺,杨德锴,何同. 顺北油气田超深井分段完井技术. 石油钻探技术. 2024(02): 66-71 . 本站查看
    6. 杨敏,鲍典,焦保雷,张娟,罗发强,罗攀登. 塔里木盆地顺北油气田少井高产地质工程一体化做法与关键技术. 中国石油勘探. 2024(03): 45-57 .
    7. 刘永辉,吴宁,罗程程,周陈程,李楠,彭振华,代星,方正魁. 高气液比油井井筒压降实验及理论模型研究. 断块油气田. 2024(05): 893-899 .
    8. 王龙,万小勇,林仁奎,李冬梅,徐燕东,朱苏阳. 断控型缝洞气藏酸压规模与无阻流量的关系研究. 钻采工艺. 2024(05): 172-178 .
    9. 蔡计光,王川,房好青,苟波,王琨,任冀川. 全缝长酸蚀填砂裂缝导流能力评价方法. 石油钻探技术. 2023(01): 78-85 . 本站查看
    10. 唐雨. HIMA高温胶凝酸体系研制及现场应用. 江汉石油职工大学学报. 2023(01): 14-16+20 .
    11. 戴一凡,侯冰. 碳酸盐岩酸蚀裂缝面粗糙度与导流能力相关性分析. 断块油气田. 2023(04): 672-677 .
    12. 李长海,赵伦,朱强,李云海,马彩琴,李晓胜,杨坤,张丽英. 酸压技术研究现状及发展趋势. 油气地质与采收率. 2023(06): 138-149 .
    13. 纪成,赵兵,李建斌,罗攀登,房好青. 温度响应地下自生成支撑剂研究. 石油钻探技术. 2022(04): 45-51 . 本站查看
    14. 郭玉洁,徐创伟,张江江,李芳,孟晓宇,谢思黔. 聚全氟乙丙烯耐高温非金属内衬油管的服役工况适应性. 工程塑料应用. 2022(11): 133-138 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (506) PDF downloads (80) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return