SONG Xiaojian, ZHENG Bangxian, TAN Yongzhi, HUANG Bingya, MA Hongyan, DONG Chenxi. Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion[J]. Petroleum Drilling Techniques, 2022, 50(1): 38-44. DOI: 10.11911/syztjs.2021054
Citation: SONG Xiaojian, ZHENG Bangxian, TAN Yongzhi, HUANG Bingya, MA Hongyan, DONG Chenxi. Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion[J]. Petroleum Drilling Techniques, 2022, 50(1): 38-44. DOI: 10.11911/syztjs.2021054

Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion

More Information
  • Received Date: March 27, 2021
  • Revised Date: November 14, 2021
  • Available Online: January 21, 2022
  • When borehole trajectory parameters are measured while drilling by a measurement system of triaxial accelerometers, fluxgates, and rate gyros, the results show huge deviations due to the influence of factors such as rotation, vibration, and magnetic interference, etc. As a result, the requirements of geosteering while drilling cannot be met. Considering this, a quaternion-based measurement model of borehole trajectory parameters was built for the above measurement system. In addition, according to state equations and measurement equations, three strap-down Kalman filters and a correction system for magnetic interference were applied to filter and correct accelerometer and fluxgate signals. In this way, a dynamic measurement method of near-bit borehole trajectory parameters based on data fusion was developed. The simulations in the laboratory and on-site drilling showed that the measurement precision of borehole trajectory parameters was significantly improved by using the proposed method. The research indicates that the proposed method can eliminate the influence of rotation, vibration, and magnetic interference on the results of the measurement system of triaxial accelerometers, fluxgates, and rate gyros while drilling to upgrade the measurement precision for geosteering, thus meeting the requirements of geosteering while drilling.
  • [1]
    杨全进,徐宝昌,左信,等. 旋转导向钻具姿态的无迹卡尔曼滤波方法[J]. 石油学报,2013,34(4):1168–1175.

    YANG Quanjin, XU Baochang, ZUO Xin, et al. An unscented Kalman filter method for attitude measurement of rotary steerable drilling assembly[J]. Acta Petrolei Sinica, 2013, 34(4): 1168–1175.
    [2]
    高怡,程为彬,汪跃龙. 近钻头钻具多源动态姿态组合测量方法[J]. 中国惯性技术学报,2017,25(2):146–150.

    GAO Yi, CHENG Weibin, WANG Yuelong. Multi-source dynamic attitude combination measurement for near-bit drilling tool[J]. Journal of Chinese Inertial Technology, 2017, 25(2): 146–150.
    [3]
    XUE Qilong, WANG Ruihe, SUN Feng. Continuous measurement while drilling utilizing strap down multi model surveying system[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(3): 650–657. doi: 10.1109/TIM.2013.2282412
    [4]
    ZHEN Ziyang, XING Dongjing, GAO Chen. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm[J]. Aerospace Science and Technology, 2018, 76: 402–411. doi: 10.1016/j.ast.2018.01.035
    [5]
    徐宝昌,杨全进,蒋海旭. 旋转导向系统有色噪声的改进无迹卡尔曼滤波方法[J]. 中国石油大学学报(自然科学版),2015,39(2):157–163.

    XU Baochang, YANG Quanjin, JIANG Haixu. Improved unscented Kalman filtering method for colored noises of rotary steerable system[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(2): 157–163.
    [6]
    COLUCCIA A, RICCIATO F. On ML estimation for automatic RSS-based indoor localization: IEEE 5th International Symposium on Wireless Pervasive Computing, Modena, May 5-7, 2010[C].
    [7]
    OUYANG R W, WONG A K, LEA C, et al. Received signal strength-based wire-less localization via semidefinite programming: Proceedings of the Global Communications Conference, Honolulu, November 30–December 4, 2009[C].
    [8]
    高怡,汪跃龙,程为彬. 抗差自适应滤波的导向钻具动态姿态测量方法[J]. 中国惯性技术学报,2016,24(4):437–442.

    GAO Yi, WANG Yuelong, CHENG Weibin. Robust adaptive filtering method for dynamic attitude measurement of steering drilling[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 437–442.
    [9]
    鲁港,佟长海,夏泊洢,等. 空间圆弧轨迹的矢量描述技术[J]. 石油学报,2014,35(4):759–764. doi: 10.7623/syxb201404019

    LU Gang, TONG Changhai, XIA Boyi, et al. Vector description of spatial -arc well bore trajectory[J]. Acta Petrolei Sinica, 2014, 35(4): 759–764. doi: 10.7623/syxb201404019
    [10]
    路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
    [11]
    陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术,2021,49(1):113–120.

    LU Ziqing. Geosteering methods of a dynamic geological model based on Kalman filter[J]. Petroleum Drilling Techniques, 2021, 49(1): 113–120.
    [12]
    WANG Ruihe, XUE Qilong, SUN Feng. Study on lateral vibration of rotary steerable drilling system[J]. Journal of Vibroengineering, 2014, 16(6): 2702–2711.
    [13]
    XUE Qilong, HENRY L, WANG Ruihe, et al. Continuous real-time measurement of drilling trajectory with new state space models of Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(1): 144–154. doi: 10.1109/TIM.2015.2479096
    [14]
    SHAO Hujie, ZHANG Xiaoping, WANG Zhi. Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2580–2594. doi: 10.1109/TSP.2014.2314064
    [15]
    YACLAN Y, BICAN B. Empirical mode decomposition based denoising method with support vector regression for time series prediction A case study for electricity load forecasting[J]. Measurement, 2017, 103: 52–61. doi: 10.1016/j.measurement.2017.02.007
    [16]
    许昊东,黄根炉,张然,等. 磁力随钻测量磁干扰校正方法研究[J]. 石油钻探技术,2014,42(2):102–106.

    XU Haodong, HUANG Genlu, ZHANG Ran, et al. Method of magnetic interference correction in survey with magnetic MWD[J]. Petroleum Drilling Techniques, 2014, 42(2): 102–106.
  • Cited by

    Periodical cited type(12)

    1. 刘望,郭朝辉,蒋子璇,管锋,田海锋,李梓睿,夏雨生. 高速旋冲钻磨水泥塞提速机理及效率研究. 石油机械. 2025(04): 17-23 .
    2. 田雨,张昕,张鹏翔,孙耀宁,许晨星,宋西岩. 冲击频率可调的钻井提速工具结构设计与试验. 石油机械. 2024(02): 36-43 .
    3. 张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 .
    4. 孙养清,易先中,万继方,易军,吴霁薇,刁斌斌,陈志湘. 机械式复合冲击器的工作特性分析. 石油机械. 2024(06): 29-37+108 .
    5. 陈炼,宋朝晖,王新东,张武涛,谢正森,粟籽华. 单牙轮钻头楔形牙齿偏转角优化方法. 石油钻探技术. 2023(01): 57-61 . 本站查看
    6. 张文波,史怀忠,席传明,张楠,熊超,陈振良. 锥形PDC齿和常规PDC齿混合切削破岩试验研究. 石油机械. 2023(03): 33-39 .
    7. 闫炎,韩礼红,刘永红,杨尚谕,曹婧,牟易升. 全尺寸PDC钻头旋转冲击破岩过程数值模拟. 石油机械. 2023(06): 36-42 .
    8. 何超,邓虎,罗祝涛,李枝林,徐建超. 扭力冲击器流体仿真优化与试验. 钻采工艺. 2023(04): 26-32 .
    9. 王勇军,刘刚,佟铮,赵长亮,郑宇轩,冯守涛. 旋冲螺杆钻具在硬岩地热钻探中的应用研究. 钻探工程. 2023(05): 146-152 .
    10. 毛良杰,马茂原,刘立鹏,张伟,陈春宇. 扭力冲击器对钻柱黏滑振动的影响分析. 断块油气田. 2022(04): 545-551 .
    11. 王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 . 本站查看
    12. 刘建华,令文学,王恒. 非平面三棱形PDC齿破岩机理研究与现场试验. 石油钻探技术. 2021(05): 46-50 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (417) PDF downloads (109) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return