ZOU Shuang, FENG Minghui, ZHANG Tianyi, ZOU Jianlong, ZENG Jianguo, ZHAO Baohui. Research and Application of Tough Cement Slurry Systems with Multi-Scale Fiber[J]. Petroleum Drilling Techniques, 2020, 48(6): 40-46. DOI: 10.11911/syztjs.2020084
Citation: ZOU Shuang, FENG Minghui, ZHANG Tianyi, ZOU Jianlong, ZENG Jianguo, ZHAO Baohui. Research and Application of Tough Cement Slurry Systems with Multi-Scale Fiber[J]. Petroleum Drilling Techniques, 2020, 48(6): 40-46. DOI: 10.11911/syztjs.2020084

Research and Application of Tough Cement Slurry Systems with Multi-Scale Fiber

More Information
  • Received Date: January 07, 2020
  • Revised Date: June 11, 2020
  • Available Online: August 17, 2020
  • To solve the problems of high brittleness, low tensile strength, poor impact resistance and fracture resistance of the cement stone in oil wells, a multi-scale fiber toughener BCE-230S was formed by selecting inorganic fibers in three different scales and conducting orthogonal tests for compound. In addition, the effects of the dosage of BCE-230S on the construction performance of cement slurry and the mechanical properties of cement were investigated, the optimal dosage was determined, by which a tough cement slurry system with multi-scale fiber was formed. The results showed that the splitting tensile strength, compressive strength and impact resistance of the cement stone were significantly improved when compared with common cement.Young’s modulus decreased significantly and the construction performance was ideal. The tough cement slurry system with multi-scale fiber was applied in the low permeability reservoir in the Jidong Oilfield for more than 10 times in the well, and the cementing quality of the two cementing surfaces was measurably improved compared with that of adjacent wells. Fracturing in later stage was successful, and no fluid channeling was observed during well testing. The results indicated that the tough cement slurry system with multi-scale fiber can effectively solve the problem of brittleness of cement stone in oil well, so as to ensure the integrity of the wellbore and the long-term cementing quality, with a potential for wide application.
  • [1]
    路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
    [2]
    刘硕琼,齐奉忠. 中国石油固井面临的挑战及攻关方向[J]. 石油钻探技术, 2013, 41(6): 6–11. doi: 10.3969/j.issn.1001-0890.2013.06.002

    LIU Shuoqiong, QI Fengzhong. Challenges and development trends of cementing technology in CNPC[J]. Petroleum Drilling Techniques, 2013, 41(6): 6–11. doi: 10.3969/j.issn.1001-0890.2013.06.002
    [3]
    刘仍光,周仕明,陶谦,等. 掺橡胶乳液和弹性粒子柔性油井水泥石的微结构[J]. 硅酸盐学报, 2015, 43(10): 1475–1482.

    LIU Rengguang, ZHOU Shiming, TAO Qian, et al. Microstructure of flexible oil-well cement stone mixed with latex and elastic particle[J]. Journal of the Chinese Ceramic Society, 2015, 43(10): 1475–1482.
    [4]
    邹双, 邹建龙, 赵宝辉, 等.一种高抗压强度、低杨氏模量固井韧性水泥组合物: CN201611089455.0[P].2017-05-31.

    ZOU Shuang, ZOU Jianlong, ZHAO Baohui, et al. A toughness cement matrix composites with high compressive strength and low Young’s modulus: CN201611089455.0[P]. 2017-05-31.
    [5]
    武治强,刘书杰,耿亚楠,等. 高温高压高含硫气井固井水泥环封隔能力评价技术[J]. 石油钻采工艺, 2016, 38(6): 787–790.

    WU Zhiqiang, LIU Shujie, GENG Ya’nan, et al. Evaluation technology for isolation capacity of cement sheath in HTHP high-sulfur gas wells[J]. Oil Drilling & Production Technology, 2016, 38(6): 787–790.
    [6]
    王秀玲,任文亮,周战云,等. 储气库固井用油井水泥增韧材料的优选与应用[J]. 钻井液与完井液, 2017, 34(3): 89–93,98.

    WANG Xiuling, REN Wenliang, ZHOU Zhanyun, et al. Selection and application of toughening agent used in cementing gas storage well[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 89–93,98.
    [7]
    谭春勤,刘伟,丁士东,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009

    TAN Chunqin, LIU Wei, DING Shidong, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Petroleum Drilling Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
    [8]
    滕兆健,郭文猛,饶辰威,等. 低渗透油气藏水平井固井用增韧防窜剂的研发和应用[J]. 钻采工艺, 2019, 42(3): 101–103. doi: 10.3969/J.ISSN.1006-768X.2019.03.29

    TENG Zhaojian, GUO Wenmeng, RAO Chenwei, et al. Development and application of anti-channeling agent for horizontal well cementing in low permeability oil and gas reservoirs[J]. Drilling & Production Technology, 2019, 42(3): 101–103. doi: 10.3969/J.ISSN.1006-768X.2019.03.29
    [9]
    严思明,严圣东,吴亚楠,等. 功能材料对固井水泥石力学性能的影响[J]. 石油钻采工艺, 2018, 40(2): 174–178.

    YAN Siming, YAN Shengdong, WU Yanan, et al. Effect of functional materials on mechanical properties of hardened cement paste[J]. Oil Drilling & Production Technology, 2018, 40(2): 174–178.
    [10]
    张聪,曹明莉,许玲. 混凝土多尺度特征与多尺度纤维增强理论研究进展[J]. 混凝土与水泥制品, 2014(3): 44–48. doi: 10.3969/j.issn.1000-4637.2014.03.013

    ZHANG Cong, CAO Mingli, XU Ling. Research progress of multi-scale characteristic and multi-scale fiber reinforcing theory for concrete[J]. China Concrete and Cement Products, 2014(3): 44–48. doi: 10.3969/j.issn.1000-4637.2014.03.013
    [11]
    张聪,曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3): 661–668.

    ZHANG Cong, CAO Mingli. Mechanical property test of multi-scale fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 661–668.
    [12]
    PEREIRA E B, FISCHER G, BARROS J A O. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites[J]. Cement and Concrete Composites, 2012, 34(10): 1114–1123. doi: 10.1016/j.cemconcomp.2012.08.004
    [13]
    邹双, 邹建龙, 赵宝辉, 等.一种固井水泥浆用纤维增韧剂及其制备方法: CN201611089451.2[P].2017-05-17.

    ZOU Shuang, ZOU Jianlong, ZHAO Baohui, et al. A fiber toughening agent for oil well cement slurry and its preparation method: CN 201611089451.2 [P]. 2017-05-17.
    [14]
    李明,杨雨佳,郭小阳. 碳纤维增强油井水泥石的力学性能[J]. 复合材料学报, 2015, 32(3): 782–788.

    LI Ming, YANG Yujia, GUO Xiaoyang. Mechanical properties of carbon fiber reinforced oil well cement composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 782–788.
    [15]
    穆海朋,步玉环,程荣超. 纤维水泥的发展及应用[J]. 石油钻探技术, 2005, 33(2): 36–36.

    MU Haipeng, BU Yuhuan, CHENG Rongchao. The development and application of fiber cement[J]. Petroleum Drilling Techniques, 2005, 33(2): 36–36.
    [16]
    程小伟,秦丹,赵殊勋,等. 动态冲击下纤维素固井水泥石力学性能及增韧机理研究[J]. 硅酸盐通报, 2019, 38(6): 1918–1922, 1928.

    CHENG Xiaowei, QIN Dan, ZHAO Shuxun, et al. Mechanical properties and toughening mechanism of cellulose cement under dynamic impact[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(6): 1918–1922, 1928.
    [17]
    华苏东,姚晓. 复合纤维提高油井水泥石韧性的研究[J]. 钻井液与完井液, 2007, 24(4): 40–42. doi: 10.3969/j.issn.1001-5620.2007.04.013

    HUA Sudong, YAO Xiao. Composite fiber improves the toughness of oil-well set cement[J]. Drilling Fluid & Completion Fluid, 2007, 24(4): 40–42. doi: 10.3969/j.issn.1001-5620.2007.04.013
    [18]
    楼晨阳,姚晓,何德清,等. 钙质晶须在高温加砂水泥中的增强性能研究[J]. 石油钻探技术, 2015, 43(4): 91–95.

    LOU Chenyang, YAO Xiao, HE Deqing, et al. The reinforcing effect of calcium-based whisker in high-temperature sand-cement mixtures[J]. Petroleum Drilling Techniques, 2015, 43(4): 91–95.
  • Related Articles

    [1]LIU Huanle, XUE Shifeng, SUN Zhiyang, ZHOU Chao, FAN Jie. Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool[J]. Petroleum Drilling Techniques, 2023, 51(3): 90-96. DOI: 10.11911/syztjs.2022116
    [2]WU Xiaoguang, HUANG Zhongwei, LI Gensheng, SHI Huaizhong, LIU Shoujun, LIU Xin. Research and Field Test of Ultra-Short Radius Horizontal Drilling Technology Combining Coiled Tubing and Flexible BHA[J]. Petroleum Drilling Techniques, 2022, 50(6): 56-63. DOI: 10.11911/syztjs.2022119
    [3]GUO Yi, GAO Xiaofei, YI Huian, DAI Ling, XU Liqian, LIU Jia. Research and Field Test on Life-Long Water Control Completion Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2021, 49(6): 93-98. DOI: 10.11911/syztjs.2021120
    [4]LIU Pingquan, LI Leibing, SHI Yucen, HAN Long. Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology[J]. Petroleum Drilling Techniques, 2021, 49(3): 55-61. DOI: 10.11911/syztjs.2021055
    [5]HAO Zhouzheng, ZUO Kai, LIU Yuming, LI Ning, WEI Aishuan, WANG Mingjie. Research and Testing of the Integrated String for Cementing and Controlling Sand in a Medium-Short Radius Wellbore[J]. Petroleum Drilling Techniques, 2019, 47(2): 99-104. DOI: 10.11911/syztjs.2019012
    [6]TIAN Jingyan, XU Yuchao. Design and Field Application of a Micro-Coring PDC Bit[J]. Petroleum Drilling Techniques, 2019, 47(1): 65-68. DOI: 10.11911/syztjs.2018134
    [7]YANG Haibo, HOU Ting, FENG Dejie, TENG Zhaozheng, WU Liugen. Research and Field Test of Non-Drilling Plug Expandable Casing Patching Technology[J]. Petroleum Drilling Techniques, 2017, 45(5): 73-77. DOI: 10.11911/syztjs.201705013
    [8]WANG Haitao, JIANG Tingxue, BIAN Xiaobing, DUAN Hua. Optimization and Field Application of Hydraulic Fracturing Techniques in Deep Shale Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76-81. DOI: 10.11911/syztjs.201602013
    [9]Yang Liqiang, Ba Lujun, Xue Jiangping. Development and Field Experiment on PDM with Uniform Wall Thickness[J]. Petroleum Drilling Techniques, 2012, 40(2): 109-112. DOI: 10.3969/j.issn.1001-0890.2012.02.021
    [10]Liu Gang, Sun Jin, He Baosheng, Tian Ji, Geng Zhanli. Design and Field Test of Surface Monitoring System for Directional Wells Anti-Collision[J]. Petroleum Drilling Techniques, 2012, 40(1): 7-11. DOI: 10.3969/j.issn.1001-0890.2012.01.002

Catalog

    Article Metrics

    Article views (747) PDF downloads (95) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return