Citation: | LIANG Haijun, GUO Xiaofeng, GAO Tao, BU Xianbiao, LI Huashan, WANG Lingbao. Scaling Spot Prediction and Analysis of Influencing Factors for a Geothermal Well in Boye County, Hebei Province[J]. Petroleum Drilling Techniques, 2020, 48(5): 105-110. DOI: 10.11911/syztjs.2020096 |
[1] |
秦祥熙,张萌,叶佳,等. 河北沧县台拱带中、低温地热资源ORC发电与综合梯级利用[J]. 地球学报, 2019, 40(2): 307–313. doi: 10.3975/cagsb.2019.011101
QIN Xiangxi, ZHANG Meng, YE Jia, et al. ORC power generation and integrated cascade utilization of medium-low temperature geothermal resources in Cangxian Bulge Region, Hebei Province[J]. Acta Geoscientica Sinica, 2019, 40(2): 307–313. doi: 10.3975/cagsb.2019.011101
|
[2] |
陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110
CHEN Zuo, XU Guoqing, JIANG Manqi. The current status anddevelopment recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110
|
[3] |
曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1–7.
ZENG Yijin. Technical progress and thinking for development of hot dry rock(HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.
|
[4] |
付亚荣,李明磊,王树义,等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526–540.
FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526–540.
|
[5] |
史猛, 张杰, 殷焘, 等.胶东半岛中低温对流型地热资源水化学特征分析[J].地质学报, 2019, 93(增刊1): 138-148.
SHI Meng, ZHANG Jie, YIN Tao, et al. Hydrochemistry characteristicanalysis of low-medium temperature convective geothermal resources in Jiaodong Peninsula[J]. Acta Geologica Sinica, 2019, 93(supplement 1): 138-148.
|
[6] |
ARMENTA M F, MONTES M R, ALCALA L M. Wellbore modeling of production well H-1D using WellSim, Los Humeros geothermal field Mexico[C]//Proceedings of the World Geothermal Congress, April, 2015, Melbourne, Australia.
|
[7] |
谯开聪. DZK02 地热井结垢原因分析及解决方案探讨[J]. 内蒙古科技与经济, 2017(8): 99, 110.
QIAO Kaicong. Cause analysis and solution discussion of scaling in DZK02 geothermal well[J]. Inner Mongolia Science Technology & Economy, 2017(8): 99, 110.
|
[8] |
王延欣,刘世良,边庆玉,等. 甘孜地热井结垢分析及防垢对策[J]. 新能源进展, 2015, 3(3): 202–206. doi: 10.3969/j.issn.2095-560X.2015.03.007
WANG Yanxin, LIU Shiliang, BIAN Qingyu, et al. Scaling analysisof geothermal well from Ganzi and countermeasures for anti-scale[J]. Advances in New & Renewable Energy, 2015, 3(3): 202–206. doi: 10.3969/j.issn.2095-560X.2015.03.007
|
[9] |
李义曼,庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展, 2018, 6(4): 274–281. doi: 10.3969/j.issn.2095-560X.2018.04.004
LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New & Renewable Energy, 2018, 6(4): 274–281. doi: 10.3969/j.issn.2095-560X.2018.04.004
|
[10] |
LIN C, KUO T, FAN K, et al. Characterization of well skin using buildup test and radon as a tracer[J]. Journal of Petroleum Science and Engineering, 2011, 78(2): 201–207. doi: 10.1016/j.petrol.2011.07.009
|
[11] |
REED M J. Thermodynamic calculations of calcium carbonate scaling in geothermal wells, dixie valley geothermal field, U.S.A.[J]. Geothermics, 1989, 18(1/2): 269–277.
|
[12] |
PATZAY G, KARMAN F H, POTA G. Preliminary investigations of scaling and corrosion in high enthalpy geothermal wells in Hungary[J]. Geothermics, 2003, 32(4/5/6): 627–638.
|
[13] |
LEE Bo-Heng, LIN Cheng-Kuo, CHUANG Chung-Wei, et al. A test of calcium carbonate scale inhibition in Chingshui Geothermal Field, Taiwan[C]//Proceedings World Geothermal Congress, April, 2015, Melbourne, Australia.
|
[14] |
RAMOS-CANDELARIA M, CABEL A C Jr, BUNING B C, et al. Calcite inhibition field trials at the Mindanao Geothermal ProductionField (MGPF), Philippines[C]//Proceedings World Geothermal Congress, May, 2000, Kyushu Tohoku, Japan.
|
[15] |
ZHAO S M, ZHAO K. Formation mechanism and control techniques of calcium carbonate scale in the Langjiu geothermal field Tibet[C]//Proceeding World Geothermal Congress, April, 2015, Melbourne, Australia.
|
[16] |
SONG Junchao, LIU Mingyan, SUN Xiuxiu. Model analysis and experimental study on scaling and corrosion tendencies of aerated geothermal water[J]. Geothermics, 2020, 85: 101766. doi: 10.1016/j.geothermics.2019.101766
|
[17] |
LI Yiman, PANG Zhonghe, GALECZKA I M. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax[J]. Geothermics, 2020, 87: 101844. doi: 10.1016/j.geothermics.2020.101844
|
[18] |
韦梅华. 山西省汾渭裂谷带地热水结垢趋势分析[J]. 华北国土资源, 2018(2): 59–62, 68. doi: 10.3969/j.issn.1672-7487.2018.02.027
WEI Meihua. Analysis of scaling tendency of geothermal water in Fenwei Rift Zone of Shanxi Province[J]. Huabei Land and Resources, 2018(2): 59–62, 68. doi: 10.3969/j.issn.1672-7487.2018.02.027
|
[19] |
张恒,胡亚召,云智汉,等. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用[J]. 新能源进展, 2016, 4(2): 111–117. doi: 10.3969/j.issn.2095-560X.2016.02.006
ZHANG Heng, HU Yazhao, YUN Zhihan, et al. Applying hydro-geochemistry simulating technology to study scaling of the high-temperature geothermal well in Kangding County[J]. Advances in New & Renewable Energy, 2016, 4(2): 111–117. doi: 10.3969/j.issn.2095-560X.2016.02.006
|
[20] |
史杰, 乃尉华, 李明, 等. 新疆曲曼高温地热田水文地球化学特征研究[J]. 水文地质工程地质, 2018, 45(3): 165–172.
SHI Jie, NAI Weihua, LI Ming, et al. Hydrogeochemical characteristics of high temperature geothermalfield of the Quman geothermal field in Xinjiang[J]. Hydrogeology and Engineering Geology, 2018, 45(3): 165–172.
|
[21] |
HAIZLIP J R, HAKLIDIR F S T. High noncondensible gas liquid dominated geothermal reservoir, Kizildere, Turkey[R]. Geothermal Resources Council Transactions, 2011.
|
[22] |
AKIN T, GUNEY A, KARGI H. Modeling of calcite scaling andestimation of gas breakout depth in a geothermal well by using PHREEQC[C]//Proceedings of the 40th Workshop on Geothermal Reservoir Engineering, January 26-28, 2015, Stanford University, California.
|
[23] |
ARNORSSON S. Precipitation of calcite from flashed geothermal waters in Iceland[J]. Contributions to Mineralogy and Petrology, 1978, 66(1): 21–28. doi: 10.1007/BF00376082
|
1. |
陈立雄,董兴蒙. 基于改进人工蜂群的高精度纵波慢度提取方法. 测井技术. 2022(06): 664-668 .
![]() | |
2. |
彭程,张进才,陈勇,李斌. 基于Akima插值的地面沉降等值面服务构建方法. 计算机与现代化. 2021(03): 63-69 .
![]() | |
3. |
王瀚玮,夏宏泉,陈宇,赵昊. 页岩气水平井LWD曲线的环境因素影响及校正方法. 石油钻探技术. 2017(06): 116-122 .
![]() |