WANG Jianhua, YAN Lili, XIE Sheng, ZHANG Jiaqi, YANG Haijun. Oil-Based Drilling Fluid Technology for High Pressure Brine Layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29-33. DOI: 10.11911/syztjs.2020007
Citation: WANG Jianhua, YAN Lili, XIE Sheng, ZHANG Jiaqi, YANG Haijun. Oil-Based Drilling Fluid Technology for High Pressure Brine Layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29-33. DOI: 10.11911/syztjs.2020007

Oil-Based Drilling Fluid Technology for High Pressure Brine Layer in Kuqa Piedmont of the Tarim Oilfield

More Information
  • Received Date: May 26, 2019
  • Revised Date: January 05, 2020
  • Available Online: February 26, 2020
  • High friction and stuck pipe have been persistent problems when drilling through the deep gypsum-salt layer of the Tarim piedmont structure. What has been observed is that invasion of high-pressure brine deteriorates the properties of high-density drilling fluid, resulting in those characteristic downhole complexities such as friction and sticking. Generally, the measure of drainage pressure relief is used to reduce the pressure of high pressure brine lens, but that poses higher requirement on the brine invasion resistance of oil-based drilling fluids. To solve the problem, a single-chain multi-cluster new emulsifier was developed to improve the emulsification efficiency by increasing the number of hydrophilic groups in the molecular structure of emulsifier, hence improving the brine invasion capacity limit of oil-based drilling fluids. The results of laboratory evaluation show that the density of oil-based drilling fluid system formed by this new emulsifier can be as high as 2.85 kg/L, the resistance to brine pollution is over 60%, and has good high-temperature stability. The oil-based drilling fluid technology applied in several ultra-deep wells drilling (including Well Keshen 1101). During the treatment, the properties of oil-based drilling fluid were stable, there was no pipe string stucking or other accidents caused by drilling fluids. Studies suggest that this oil-based drilling fluid system has good rheology, sedimentation stability and brine pollution resistance. It can handle mud contamination in the massive gypsum-salt layer or high-pressure brine formation of deep wells, and can be promoted and applied in the Kuqa piedmont drilling of the Tarim Oilfield.

  • [1]
    张跃,张博,吴正良,等. 高密度油基钻井液在超深复杂探井中的应用[J]. 钻采工艺, 2013, 36(6): 95–97. doi: 10.3969/J.ISSN.1006-768X.2013.06.28

    ZHANG Yue, ZHANG Bo, WU Zhengliang, et al. Application of high density oil-base drilling fluid in Keshen well 7 of Tarim Oilfield[J]. Drilling & Production Technology, 2013, 36(6): 95–97. doi: 10.3969/J.ISSN.1006-768X.2013.06.28
    [2]
    鄢捷年.钻井液工艺学[M].东营: 石油大学出版社, 2001: 57–88.

    YAN Jienian. Drilling fluid technology[M]. Dongying: Petroleum University Press, 2001: 57–88.
    [3]
    周健,贾红军,刘永旺,等. 库车山前超深超高压盐水层安全钻井技术探索[J]. 钻井液与完井液, 2017, 34(1): 54–59. doi: 10.3969/j.issn.1001-5620.2017.01.010

    ZHOU Jian, JIA Hongjun, LIU Yongwang, et al. Research on safe drilling technology for ultra deep ultrahigh pressure saltwater zones in piedmont area, Kuche[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 54–59. doi: 10.3969/j.issn.1001-5620.2017.01.010
    [4]
    尹达,叶艳,李磊,等. 塔里木山前构造克深7井盐间高压盐水处理技术[J]. 钻井液与完井液, 2012, 29(5): 6–8. doi: 10.3969/j.issn.1001-5620.2012.05.002

    YIN Da, YE Yan, LI Lei, et al. High pressure salt water treatment technology of Well Keshen 7 in Foothill Structural Zone of Tarim[J]. Drilling Fluid & Completion Fluid, 2012, 29(5): 6–8. doi: 10.3969/j.issn.1001-5620.2012.05.002
    [5]
    卢俊安,王春生,冯少波,等. 超高压盐水溢流处置技术[J]. 钻采工艺, 2017, 40(5): 5–7. doi: 10.3969/J.ISSN.1006-768X.2017.05.02

    LU Jun’an, WANG Chunsheng, FENG Shaobo, et al. Disposal measures for ultra-high-pressure brine overflow[J]. Drilling & Production Technology, 2017, 40(5): 5–7. doi: 10.3969/J.ISSN.1006-768X.2017.05.02
    [6]
    李悦,李玮,谢天,等. BH-WEI抗三高钻井液技术在克深2-1-14井的应用[J]. 当代化工, 2016, 45(4): 773–775. doi: 10.3969/j.issn.1671-0460.2016.04.035

    LI Yue, LI Wei, XIE Tian, et al. Application of BH-WEI three-high drilling fluid in Well Keshen 2-1-14[J]. Contemporary Chemical Industry, 2016, 45(4): 773–775. doi: 10.3969/j.issn.1671-0460.2016.04.035
    [7]
    王中华. 国内钻井液技术进展评述[J].石油钻探技术, 2019, 47(3): 95–102.

    WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102.
    [8]
    谢海龙. 塔里木山前构造复杂地质条件下的钻井液技术在大古一井的应用[J]. 钻采工艺, 2008, 31(1): 135–137. doi: 10.3969/j.issn.1006-768X.2008.01.045

    XIE Hailong. Application of high density mud in Well DG-1 in Tarim Mountain Front[J]. Drilling & Production Technology, 2008, 31(1): 135–137. doi: 10.3969/j.issn.1006-768X.2008.01.045
    [9]
    TENG X, YANG P, LI N, et al. Successful HPHT drilling through innovative practices: sharing the subsalt HPHT well drilling case in Tarim Basin[R]. SPE 172782, 2015.
    [10]
    WANG Jianhua, YAN Lili, LIU Fengbao, et al. Treatment technology of brine contamination and barite settlement for the high temperature and high density OBM for ultra-deep well drilling in Western China[R]. IPTC 19543, 2019.
    [11]
    周健,刘永旺,贾红军,等. 库车山前巨厚盐膏层提速技术探索与应用[J]. 钻采工艺, 2017, 40(1): 21–24. doi: 10.3969/J.ISSN.1006-768X.2017.01.06

    ZHOU Jian, LIU Yongwang, JIA Hongjun, et al. Study to improve rop in thick salt-gypsum layers at Kuqa Piedmont Area[J]. Drilling & Production Technology, 2017, 40(1): 21–24. doi: 10.3969/J.ISSN.1006-768X.2017.01.06
  • Cited by

    Periodical cited type(14)

    1. 刘承诚. 基于KPI的裸眼封隔器应用效能评价. 石油矿场机械. 2025(01): 19-23 .
    2. 刘豇瑜,任登峰,秦世勇,张键,晏楠,刘洋. 塔里木盆地富满油田超深缝洞型碳酸盐岩储层立体酸压技术. 大庆石油地质与开发. 2025(03): 77-84 .
    3. 李冬梅,李会会,朱苏阳. 大尺度离散裂缝的渗透率应力敏感研究——以顺北油田为例. 断块油气田. 2024(01): 147-153 .
    4. 柳志翔,邹伟,王冲,徐迎春. 新型超高温高压井裸眼封隔器研制与应用. 工程机械. 2024(04): 23-29+8 .
    5. 丁士东,庞伟,周珺,杨德锴,何同. 顺北油气田超深井分段完井技术. 石油钻探技术. 2024(02): 66-71 . 本站查看
    6. 杨敏,鲍典,焦保雷,张娟,罗发强,罗攀登. 塔里木盆地顺北油气田少井高产地质工程一体化做法与关键技术. 中国石油勘探. 2024(03): 45-57 .
    7. 刘永辉,吴宁,罗程程,周陈程,李楠,彭振华,代星,方正魁. 高气液比油井井筒压降实验及理论模型研究. 断块油气田. 2024(05): 893-899 .
    8. 王龙,万小勇,林仁奎,李冬梅,徐燕东,朱苏阳. 断控型缝洞气藏酸压规模与无阻流量的关系研究. 钻采工艺. 2024(05): 172-178 .
    9. 蔡计光,王川,房好青,苟波,王琨,任冀川. 全缝长酸蚀填砂裂缝导流能力评价方法. 石油钻探技术. 2023(01): 78-85 . 本站查看
    10. 唐雨. HIMA高温胶凝酸体系研制及现场应用. 江汉石油职工大学学报. 2023(01): 14-16+20 .
    11. 戴一凡,侯冰. 碳酸盐岩酸蚀裂缝面粗糙度与导流能力相关性分析. 断块油气田. 2023(04): 672-677 .
    12. 李长海,赵伦,朱强,李云海,马彩琴,李晓胜,杨坤,张丽英. 酸压技术研究现状及发展趋势. 油气地质与采收率. 2023(06): 138-149 .
    13. 纪成,赵兵,李建斌,罗攀登,房好青. 温度响应地下自生成支撑剂研究. 石油钻探技术. 2022(04): 45-51 . 本站查看
    14. 郭玉洁,徐创伟,张江江,李芳,孟晓宇,谢思黔. 聚全氟乙丙烯耐高温非金属内衬油管的服役工况适应性. 工程塑料应用. 2022(11): 133-138 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return