FANG Haoqing, ZHAO Bing, WANG Wenzhi, ZHOU Zhou. Simulation Study on the Range of Diversion in Targeted Fracturing of Prefabricated Fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97-103. DOI: 10.11911/syztjs.2019048
Citation: FANG Haoqing, ZHAO Bing, WANG Wenzhi, ZHOU Zhou. Simulation Study on the Range of Diversion in Targeted Fracturing of Prefabricated Fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97-103. DOI: 10.11911/syztjs.2019048

Simulation Study on the Range of Diversion in Targeted Fracturing of Prefabricated Fractures in the Tahe Oilfield

More Information
  • Received Date: October 06, 2018
  • Revised Date: June 22, 2019
  • Available Online: July 23, 2019
  • Oil and gas resources of the ultra-deep carbonate reservoirs in the Tahe Oilfield occur mainly in natural fractures and cavities, and the application of a targeted fracturing technology for prefabricated fractures can control the fracture diversion and improve oil and gas production. By utilizing the corrected resistance reduction ratio method to calculate string resistance, combining the unstable seepage theory to calculate pressure change in a fracture, and applying the displacement discontinuity method to calculate fracture propagation and diversion, it is able to establish the integrated model of fracture propagation. Through computational analysis of parameters such as the fracture propagation direction/angle and extension length of prefabricated fracture-bearing targeted fracturing, and correlating the pumping parameters and the diverting distance of hydraulic fracture, the accuracy and validity of this model are validated by virtue of finite element method and physical simulation experiments. The study results showed that the parameters of fracturing fluid viscosity, prefabricated fracture angle, in-situ stress difference and formation rock elastic modulus are negatively correlated with the diverting distance of hydraulic fracture. In this case, the length of prefabricated fracture is positively correlated with the diverting distance; the preferable pumping flow rate shall be adopted to achieve the optimal diverting distance. The simulation results of targeted fracturing prefabricated fracture diverting technology provided the theoretical guidance and data support for the efficient development of ultra-deep carbonate fracture and cavity reservoirs in the Tahe Oilfield.

  • [1]
    张广清,陈勉,赵艳波. 新井定向射孔转向压裂裂缝起裂与延伸机理研究[J]. 石油学报, 2008, 29(1): 116–119. doi: 10.3321/j.issn:0253-2697.2008.01.022

    ZHANG Guangqing, CHEN Mian, ZHAO Yanbo. Study on initiation and propagation mechanism of fractures in oriented perforation of new wells[J]. Acta Petrolei Sinica, 2008, 29(1): 116–119. doi: 10.3321/j.issn:0253-2697.2008.01.022
    [2]
    张广清,陈勉. 水平井水力裂缝非平面扩展研究[J]. 石油学报, 2005, 26(3): 95–97, 101. doi: 10.3321/j.issn:0253-2697.2005.03.021

    ZHANG Guangqing, CHEN Mian. Non-planar propagation of hydraulic fracture near horizontal wellbore[J]. Acta Petrolei Sinica, 2005, 26(3): 95–97, 101. doi: 10.3321/j.issn:0253-2697.2005.03.021
    [3]
    ABASS H H, HEDAYATI S, MEADOWS D L. Nonplanar fracture propagation from a horizontal wellbore: experimental study[J]. SPE Production & Facilities, 1996, 11(3): 133–137.
    [4]
    张洪新,冯胜利,修书志. 水力压裂裂缝转向数值模拟研究[J]. 石油天然气学报, 2009, 31(2): 123–125. doi: 10.3969/j.issn.1000-9752.2009.02.030

    ZHANG Hongxin, FENG Shengli, XIU Shuzhi. Numerical simulation of hydraulic fracturing fracture steering[J]. Journal of Oil and Gas Technology, 2009, 31(2): 123–125. doi: 10.3969/j.issn.1000-9752.2009.02.030
    [5]
    黄高传,刘炜,王晓东. 裂缝转向压裂工艺技术在新疆油田的应用[J]. 新疆石油科技, 2008, 18(3): 21–24.

    HUANG Gaochuan, LIU Wei, WANG Xiaodong. Application of fracture steering fracturing technology in Xinjiang Oilfield[J]. Xinjiang Petroleum Science and Technology, 2008, 18(3): 21–24.
    [6]
    WRIGHT C A, WEIJERS L. Hydraulic fracture reorientation: does it occur? does it matter?[J]. The Leading Edge, 2001, 20(10): 1185–1189. doi: 10.1190/1.1487252
    [7]
    卢运虎,陈勉,安生. 页岩气井脆性页岩井壁裂缝扩展机理[J]. 石油钻探技术, 2012, 40(4): 13–16. doi: 10.3969/j.issn.1001-0890.2012.04.003

    LU Yunhu, CHEN Mian, AN Sheng. Brittle shale wellbore fracture propagation mechanism[J]. Petroleum Drilling Techniques, 2012, 40(4): 13–16. doi: 10.3969/j.issn.1001-0890.2012.04.003
    [8]
    陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 88–94. doi: 10.3969/j.issn.1673-5005.2013.05.013

    CHEN Mian. Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 88–94. doi: 10.3969/j.issn.1673-5005.2013.05.013
    [9]
    刘合, 张广明, 张劲, 等.油井水力压裂摩阻计算和井口压力预测[J].岩石力学与工程学报, 2010, 29(增刊1): 2833–2839.

    LIU He, ZHANG Guangming, ZHANG Jin, et al. Friction loss calculation and surface pressure prediction in oil well hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(supplement 1): 2833–2839.
    [10]
    EI-RABBA A M, SHAH S N, LORD D L. New perforation pressure-loss correlations for limited-entry fracturing treatments[R]. SPE 38373, 1997.
    [11]
    廖新维, 沈平平.现代试井分析[M].北京: 石油工业出版社, 2002: 171–175.

    LIAO Xinwei, SHEN Pingping. Modern well test analysis[M]. Beijing: Petroleum Industry Press, 2002: 171–175.
    [12]
    刘光廷,涂金良,张镜剑. 位移不连续边界元法解多裂纹体的裂缝扩展[J]. 清华大学学报(自然科学版), 1996, 36(1): 59–64.

    LIU Guangting, TU Jinliang, ZHANG Jingjian. Solution for crack propagation in multi-crack body by displacement-discontinuous boundary element method[J]. Journal of Tsinghua University (Science and Technology), 1996, 36(1): 59–64.
    [13]
    朱万成,唐春安. 岩板中混合裂纹扩展过程的数值模拟[J]. 岩土工程学报, 2000, 22(2): 231–234. doi: 10.3321/j.issn:1000-4548.2000.02.018

    ZHU Wancheng, TANG Chun’an. Numerical simulation on the propagation processes of mixed mode cracks in rock plates[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 231–234. doi: 10.3321/j.issn:1000-4548.2000.02.018
    [14]
    何丽萍,韩锋刚,李文宏,等. 多级燃速爆燃气体压裂裂缝扩展耦合作用分析[J]. 石油钻探技术, 2009, 37(2): 66–69. doi: 10.3969/j.issn.1001-0890.2009.02.018

    HE Liping, HAN Fenggang, LI Wenhong, et al. Analysis of fracture extension driven by detonation gas of multi-pulse combustion rate[J]. Petroleum Drilling Techniques, 2009, 37(2): 66–69. doi: 10.3969/j.issn.1001-0890.2009.02.018
    [15]
    田守嶒,陈立强,盛茂,等. 水力喷射分段压裂裂缝起裂模型研究[J]. 石油钻探技术, 2015, 43(5): 31–36.

    TIAN Shouceng, CHEN Liqiang, SHENG Mao, et al. Modeling of fracture initiation for staged hydraulic jetting fracturing[J]. Petro-leum Drilling Techniques, 2015, 43(5): 31–36.
  • Cited by

    Periodical cited type(9)

    1. 罗攀登,张士诚,郭天魁,王赫,陈铭,张雄. 缝洞型碳酸盐岩水平井压裂裂缝沟通效果模拟. 深圳大学学报(理工版). 2025(01): 30-40 .
    2. 罗志锋,程龙,谢耀增,刘举,张雄,罗攀登. 基于“扩缝串洞”理念的超深层小缝洞群碳酸盐岩储层改造数值模拟. 天然气工业. 2024(05): 80-95 .
    3. 周舟,李犇,耿宇迪,肖锐. 超深破碎型地层岩石力学参数的大数据预测模型. 石油钻探技术. 2024(05): 91-96 . 本站查看
    4. 何成江,姜应兵,文欢,李翔. 塔河油田缝洞型油藏“一井多控”高效开发关键技术. 石油钻探技术. 2022(04): 37-44 . 本站查看
    5. 郭建春,苟波,秦楠,赵俊生,伍林,王坤杰,任冀川. 深层碳酸盐岩储层改造理念的革新——立体酸压技术. 天然气工业. 2020(02): 61-74 .
    6. 李春月,房好青,牟建业,黄燕飞,胡文庭. 碳酸盐岩储层缝内暂堵转向压裂实验研究. 石油钻探技术. 2020(02): 88-92 . 本站查看
    7. 韩福勇,倪攀,孟海龙. 宽带暂堵转向多缝压裂技术在苏里格气田的应用. 钻井液与完井液. 2020(02): 257-263 .
    8. 李新勇,耿宇迪,刘志远,汪文智,周舟. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究. 石油钻探技术. 2020(06): 88-93 . 本站查看
    9. 王涛,赵兵,曲占庆,郭天魁,罗攀登,王晓之. 塔河老区井周弱势通道暂堵酸压技术. 断块油气田. 2019(06): 794-799 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1041) PDF downloads (56) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return