WANG Fangxiang, WANG Ruihe, ZHOU Weidong, LI Luopeng. The Influencing Factors of the Rock Breaking Effect under Particle Water Jet Impacting[J]. Petroleum Drilling Techniques, 2017, 45(2): 40-45. DOI: 10.11911/syztjs.201702007
Citation: WANG Fangxiang, WANG Ruihe, ZHOU Weidong, LI Luopeng. The Influencing Factors of the Rock Breaking Effect under Particle Water Jet Impacting[J]. Petroleum Drilling Techniques, 2017, 45(2): 40-45. DOI: 10.11911/syztjs.201702007

The Influencing Factors of the Rock Breaking Effect under Particle Water Jet Impacting

More Information
  • Received Date: September 21, 2016
  • Revised Date: February 21, 2017
  • To highlight the patterns of rock fractures in the dynamic indentation particle water jet more accurately, and to identify optimal process parameters for dynamic indentation operations, orthogonal tests were performed for rock fractures in dynamic indentation involving particle water jet to determine the impact of various factors in particle water jet on rock-breaking performances. Then, considering the impacts of each individual factor, volumetric fractions, diameters, jet angles and other key factors were reviewed to evaluate their impacts on rock-breaking performances. Test results showed the influencing factors of particle water jet on rock-breaking performances could be placed in following order in accordance with the intensity of their impact, including: jet time, volumetric fraction of particles, diameters, jet angles and distances. The optimal particle volumetric fraction was determined to be 2.0%; the optimal particle diameter was determined to be 1.5 mm, and the optimal jet angle was determined to be 15°. Relevant research results showed that the depths of formed holes had a quadratic function relationship with both volumetric factors and particle diameters and a quartic function relationship with jet angles. On the other hand, volumes of holes had a tertiary function relationship with particle volumetric factors, particle diameters and jet angles. The conclusions after evaluating the results of the study might provide reliable a theoretical foundation for the application and promotion of particle impact drilling techniques.
  • [1]
    KOVALYOV A V,RYABCHIKOV S Y,ISAEV Y D,et al.Modeling pellet impact drilling process[J].IOP Conference Series:Earth and Environmental Science,2016,33(1):1-5.
    [2]
    徐依吉,赵健,毛炳坤,等.冲击钻井粒子注入系统研究[J].石油钻采工艺,2012,34(1):1-5. XU Yiji,ZHAO Jian,MAO Bingkun,et al.Research on particle injection system in percussion drilling[J].Oil Drilling Production Technology,2012,34(1):1-5.
    [3]
    赵健,韩烈祥,徐依吉,等.粒子冲击钻井技术理论与现场试验[J].天然气工业,2014,34(8):102-107. ZHAO Jian,HAN Liexiang,XU Yiji,et al.A theoretical study and field test of the particle impact drilling technology[J].Natural Gas Industry,2014,34(8):102-107.
    [4]
    TIBBITTS G A,GALLOWAY G G.Particle drilling alters standard rock-cutting approach[J].World Oil,2008,229(6):37-44.
    [5]
    赵健,徐依吉,邢雪阳,等.脆性岩石粒子冲击理论模型与实验[J].中国矿业大学学报,2014,43(6):1108-1112. ZHAO Jian,XU Yiji,XING Xueyang,et al.A theoretical model and experiment of brittle rock impacted by particles[J].Journal of China University of Mining Technology,2014,43(6):1108-1112.
    [6]
    王方祥,王瑞和,周卫东,等.粒子冲击破岩深度的理论模型研究与室内试验[J].石油钻探技术,2016,44(6):36-41. WANG Fangxiang,WANG Ruihe,ZHOU Weidong,et al.Theoretical study and experimental tests of rock breaking depth under particle impacting[J].Petroleum Drilling Techniques,2016,44(6):36-41.
    [7]
    李罗鹏,王瑞和,周卫东,等.基于神经网络的磨料射流破岩射孔深度预测方法[J].石油钻探技术,2009,37(5):30-33. LI Luopeng,WANG Ruihe,ZHOU Weidong,et al.Prediction method for perforation depth of rock with abrasive water jet based on BP network[J].Petroleum Drilling Techniques,2009,37(5):30-33.
    [8]
    王明波,王瑞和,陈炜卿.单个磨料颗粒冲击岩石过程的数值模拟研究[J].石油钻探技术,2009,37(5):34-38. WANG Mingbo,WANG Ruihe,CHEN Huiqing.Numerical simulation study of rock breaking mechanism and process under abrasive water jet[J].Petroleum Drilling Techniques,2009,37(5):34-38.
    [9]
    颜廷俊,姜美旭,张杨,等.基于ANSYS-LSDYNA的围压下粒子冲击破岩规律[J].断块油气田,2012,19(2):240-243. YAN Tingjun,JIANG Meixu,ZHANG Yang,et al.Study on rock breaking for particle impacting with confining pressure based on ANSYS-LSDYNA[J].Fault-Block Oil Gas Field,2012,19(2):240-243.
    [10]
    况雨春,朱志镨,蒋海军,等.单粒子冲击破岩实验与数值模拟[J].石油学报,2012,33(6):1059-1063. KUANG Yuchun,ZHU Zhipu,JIANG Haijun,et al.The experimental study and numerical simulation of single-particle impacting rock[J].Acta Petrolei Sinica,2012,33(6):1059-1063.
    [11]
    王方祥,王瑞和,周卫东,等.煤层粒子冲击钻井技术的适用性分析及参数优化[J].煤炭科学技术,2015,43(9):76-79,29. WANG Fangxiang,WANG Ruihe,ZHOU Weidong,et al.Suitability analysis and parameter optimization on particle impact drilling technology of seam[J].Coal Science and Technology,2015,43(9):76-79,29.
    [12]
    赵健,石超,徐依吉,等.钢粒间干涉对冲击破岩效果的影响[J].高压物理学报,2016, 30(2):163-169. ZHAO Jian,SHI Chao,XU Yiji,et al.Numerical and experimental analysis of rock breaking effect by steel shot impacting intervention[J].Chinese Journal of High Pressure Physics,2016,30(2):163-169.
    [13]
    王宝金.粒子冲击破岩试验装置的研制与试验研究[D].大庆:东北石油大学机械制造及其自动化学院,2015. WANG Baojin.Develop of test equipment used in particle impact rock fracturing and experimental investigation[D].Daqing:Northeast Petroleum University,School of Mechanical Manufacturing and Automation,2015.
    [14]
    马若虚.粒子射流冲击钻井破岩装置喷嘴研究[D].大庆:东北石油大学机械制造及其自动化学院,2015. MA Ruoxu.Research on the nozzle device of the particle impact drilling system[D].Daqing:Northeast Petroleum University,School of Mechanical Manufacturing and Automation,2015.
    [15]
    常兆光,王清河,杜彩凤.应用统计方法[M].北京:石油工业出版社,2009:166-180. CHANG Zhaoguang,WANG Qinghe,DU Caifeng.Applied statistical method[M].Beijing:Petroleum Industry Press,2009:166-180.
    [16]
    CHAN L Y,MA Changxing,GOH T N.Orthogonal arrays for experiments with lean designs[J].Journal of Quality Technology,2003,35(2):123-138.
    [17]
    任建华,徐依吉,赵健,等.粒子冲击破岩的数值模拟分析[J].高压物理学报,2012,26(1):89-94. REN Jianhua,XU Yiji,ZHAO Jian,et al.Numerical simulation analysis of particle impacting breaking rock[J].Chinese Journal of High Pressure Physics,2012,26(1):89-94.
    [18]
    CUI M,ZHAI Y H,JI G D.Experimental study of rock breaking effect of steel particles[J].Journal of Hydrodynamics,2011,23(2):241-246.
  • Related Articles

    [1]SUN Huan, ZHU Mingming, ZHANG Qin, SHI Chongdong, WANG Qingchen, QU Yanping. Safe Drilling and Completion Technologies for Ultra-Long Horizontal Section of Tight Gas Horizontal Wells in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 14-19. DOI: 10.11911/syztjs.2022095
    [2]WANG Zhongliang, ZHOU Yang, WEN Xiaofeng, LONG Bin, DING Fan, CHEN Shaowei. Drilling Technologies for Horizontal Wells with Ultra-Long Horizontal Section and Slim Hole in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 14-18. DOI: 10.11911/syztjs.2021060
    [3]LI Shanshan, SUN Hu, ZHANG Mian, CHI Xiaoming, LIU Huan. Subdivision Cutting Fracturing Technology for Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92-98. DOI: 10.11911/syztjs.2021080
    [4]TIAN Fengjun, WANG Yungong, TANG Bin, LI Zhijun, LIU Keqiang. Drilling Technology for Long-Offset 3D Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 34-38. DOI: 10.11911/syztjs.2021079
    [5]NI Huafeng, YANG Guang, ZHANG Yanbing. ROP Improvement Technologies for Large-Cluster Horizontal Shale Oil Wells in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 29-33. DOI: 10.11911/syztjs.2021076
    [6]HU Zubiao, ZHANG Jianqing, WANG Qingchen, WU Fuping, HAN Chengfu, LIU Weirong. Drilling Fluid Technology for Ultra-Long Horizontal Section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28-36. DOI: 10.11911/syztjs.2020050
    [7]YANG Lingzhi, LIU Yanqing, HU Gaixing, SHEN Xiaoli, BI Fuwei. Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023
    [8]JIA Yuqin, ZHENG Mingke, YANG Haien, ZHOU Guangqing. Optimization of Operational Parameters for Deep Displacement Involving Polymer Microspheres in Low Permeability Reservoirs of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(1): 75-82. DOI: 10.11911/syztjs.2018030
    [9]JIA Jun, ZHAO Xiangyang, LIU Wei. Research and Field Test of Water-Based Environmental-Friendly Membrane Forming Drilling Fluid Technology in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(5): 36-42. DOI: 10.11911/syztjs.201705007
    [10]Wang Wenhuan, Peng Huanhuan, Li Guangquan, Lei Zhengdong, Lü Wenfeng. Research on Water Flooding Dynamic Fractures to Optimize Infill Drilling Spacing in Ultra-Low Permeability Reservoirs,Changqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 106-110. DOI: 10.11911/syztjs.201501018
  • Cited by

    Periodical cited type(8)

    1. 李彦操,周建民,周晓轩,刘霞继,杨倩云,邱春阳. 车斜577井深部地层防塌钻井液技术难点分析与研究. 四川化工. 2024(03): 24-27 .
    2. 李秀灵,赵怀珍,蓝强,李琼. 抗高温低固相钻井液在桩古斜411井的应用. 承德石油高等专科学校学报. 2023(02): 46-52 .
    3. 曾佳,程慧君. 无固相钻井液技术现状及发展趋势. 辽宁化工. 2022(03): 388-390+441 .
    4. 刘瑞,于培志. 抗高温水基钻井液处理剂研究进展. 应用化工. 2021(06): 1618-1621 .
    5. 徐明磊,佟乐,杨双春,张同金,ELAMAN,刘阳. 环保型耐高温无固相钻井液体系研究进展. 应用化工. 2020(08): 2063-2067+2074 .
    6. 卢兴国. 新型疏水缔合聚合物钻井液体系性能评价. 化学与生物工程. 2020(10): 47-50 .
    7. 耿学礼,苏延辉,郑晓斌,高波. 无固相保护煤层钻井液研究及应用. 石油钻采工艺. 2017(04): 455-459 .
    8. 张群正,刘金磊,孙淑娟,周慧鑫,杨萌,白永强. 控流管路中降滤失剂的合成与性能研究. 钻井液与完井液. 2017(03): 39-43 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return