LIU Kuangxiao, WANG Qingjun, LAN Kai, ZHAO Zhuanling. Large Diameter Hole Steering Drilling Technology for Three-Dimensional Horizontal Well in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(5): 16-21. DOI: 10.11911/syztjs.201605003
Citation: LIU Kuangxiao, WANG Qingjun, LAN Kai, ZHAO Zhuanling. Large Diameter Hole Steering Drilling Technology for Three-Dimensional Horizontal Well in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(5): 16-21. DOI: 10.11911/syztjs.201605003

Large Diameter Hole Steering Drilling Technology for Three-Dimensional Horizontal Well in the Fuling Shale Gas Field

More Information
  • Received Date: September 19, 2015
  • Revised Date: May 11, 2016
  • The Fuling shale gas three-dimensional horizontal well featuring with the second spud deviated section with a large hole diameter, long tangent section, frequent interbedded sandstone and mudstone, presented issues like large azimuth adjustment, a lower unstable build-up rate of BHA and a low rate of penetration. Therefore, directional drilling technology for three-dimensional horizontal well with large diameter hole was studied. The well trajectory was optimized considering the natural build-up rate of formations to reduce build-up rates, shorten the tangent section, and reduce the wellbore trajectory adjustment and wellbore trajectory control difficulty. The "single PDM and dual stabilizer" BHA were alternated by "single PDM and single stabilizer" BHA combined with WOB, so that to improve the composite drilling footage in tangent section and reduce friction and torque. A hydraulic oscillator was applied to reduce friction and torque in azimuth change section in order to improve ROP. The steering drilling technology was applied in 34 horizontal wells in the Fuling Area with a deviated second spud average directional drilling time of 15.30 d, which was 37.63% short compared to the wells in the same block. The average drilling cycle was 58.45 d, which was 21.01% shorter than the wells in same block. The wellbore quality passing rate was 100%. Application results showed that the steering drilling technology for a three-dimensional horizontal well with large hole diameter could increase ROP in deviated section with large hole diameter and could shorten the drilling cycle.
  • [1]
    郭彤楼,张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发,2014,41(1):28-36. GUO Tonglou,ZHANG Hanrong.Formation and enrichment mode of Jiaoshiba Shale Gas Field,Sichuan Basin[J].Petroleum Exploration and Development,2014,41(1):28-36.
    [2]
    王燕,冯明刚,魏祥峰,等.焦石坝页岩气储层黏土组分特征及其体积分数计算[J].断块油气田,2015,22(3):301-304. WANG Yan,FENG Minggang,WEI Xiangfeng,et al.Clay mineral component characteristics and volume fraction calculation for Jiaoshiba shale gas reservoir[J].Fault-Block Oil Gas Field,2015,22(3):301-304.
    [3]
    牛新明.涪陵页岩气田钻井技术难点及对策[J].石油钻探技术,2014,42(4):1-6. NIU Xinming.Drilling technology challenges and resolutions in Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2014,42(4):1-6.
    [4]
    朱江,楼一珊,蒋小莺.地层自然造斜参数计算模型及其应用[J].江汉石油学院学报,2002,24(1):40-41. ZHU Jiang,LOU Yishan,JIANG Xiaoying.Calculation model of formation natural deflecting parameters and its application[J].Journal of Jianghan Petroleum Institute,2002,24(1):40-41.
    [5]
    赵靖影,邓金根,谢玉洪,等.通用地层研磨性预测模型的建立及应用[J].中国海上油气,2011,23(5):329-334. ZHAO Jingying,DENG Jingen,XIE Yuhong,et al.Establishment and application of a universal prediction model of formation abrasivity[J].China Offshore Oil and Gas,2011,23(5):329-334.
    [6]
    李俊峰,姜振坤,于洪波,等.考虑方位漂移时定向井待钻轨道设计方法[J].石油钻探技术,2005,33(6):6-8. LI Junfeng,JIANG Zhenkun,YU Hongbo,et al.A method for designing well trajectory of directional wells with azimuthal drift[J].Petroleum Drilling Techniques,2005,33(6):6-8.
    [7]
    周贤海.涪陵焦石坝区块页岩气水平井钻井完井技术[J].石油钻探技术,2013,41(5):26-30. ZHOU Xianhai.Drilling completion techniques used in shale gas horizontal wells in Jiaoshiba Block of Fuling Area[J].Petroleum Drilling Techniques,2013,41(5):26-30.
    [8]
    刘修善,何树山,邹野.导向钻具几何造斜率的研究[J].石油学报,2004,25(6):83-87. LIU Xiushan,HE Shushan,ZOU Ye.Study on the geometric build angle rate of steerable motor[J].Acta Petrolei Sinica,2004,25(6):83-87.
    [9]
    刘修善,王成萍,程安林.弯壳体导向钻具的设计方法[J].石油钻采工艺,2005,27(4):18-20,23. LIU Xiushan,WANG Chengping,CHENG Anlin.Design method of bend housing steerable drill tool[J].Oil Drilling Production Technology,2005,27(4):18-20,23.
    [10]
    刘修善.导向钻具几何造斜率的实用计算方法[J].天然气工业,2005,25(11):50-52. LIU Xiushan.Practical calculation method of geo metric deflection rate of guide drilling tool[J].Natural Gas Industry,2005,25(11):50-52.
    [11]
    兰凯,刘明国,张建华,等.东濮凹陷非常规油气藏长水平井钻井关键技术[C]//路保平.石油工程技术新进展.北京:中国石化出版社,2014:337-344. LAN Kai,LIU Mingguo,ZHANG Jianhua,et al.Key drilling technologies of long horizontal well drilling for unconventional hydrocarbon reservoirs in Dongpu depression[C]// LU Baoping.The new progress of petroleum engineering technology.Beijing:China Petrochemical Press,2014:337-344.
    [12]
    张新红,冯定.导向钻井钻具组合结构造斜特性分析[J].石油天然气学报,2007,29(2):138-140. ZHANG Xinhong,FENG Ding.Analysis on structural deflecting characters of downhole assembly for steering drilling[J].Journal of Oil and Gas Technology,2007,29(2):138-140.
    [13]
    时江涛,胡振华,忤伟,等.长靶前位移浅垂深水平井轨迹控制技术[J].石油地质与工程,2009,23(3):95-97. SHI Jiangtao,HU Zhenhua,WU Wei,et al.Well trajectory control technology for horizontal wells with long distance to target and low TVD[J].Petroleum Geology and Engineering,2009,23(3):95-97.
    [14]
    王鹏,倪红坚,王瑞和,等.调制式振动对大斜度井减摩阻影响规律[J].中国石油大学学报(自然科学版),2014,38(4):93-97. WANG Peng,NI Hongjian,WANG Ruihe,et al.Influence laws of modulated vibration on friction reduction in inclined-wells[J].Journal of China University of Petroleum(Edition of Natural Science),2014,38(4):93-97.
    [15]
    张辉,吴仲华,蔡文军.水力振荡器的研制及现场试验[J].石油机械,2014,42(6):12-15. ZHANG Hui,WU Zhonghua,CAI Wenjun.Development and field testing of hydraulic oscillator[J].China Petroleum Machiner,2015,43(4):54-58.
    [16]
    明瑞卿,张时中,王海涛,等.国内外水力振荡器的研究现状及展望[J].石油钻探技术,2015,43(5):116-122. MING Ruiqing,ZHANG Shizhong,WANG Haitao,et al.Research status and prospect of hydraulic oscillator worldwide[J].Petroleum Drilling Techniques,2015,43(5):116-122.
    [17]
    许京国,陶瑞东,杨静,等.水力振荡器在大位移井张海29-38L井的应用[J].断块油气田,2014,21(4:527-529. XU Jingguo,TAO Ruidong,YANG Jing,et al.Appliation of hydraulic oscillator in Zhanghai 29-38L extended reach well[J].Fault-Block Oil Gas Field,2014,21(4):527-529.
    [18]
    王建龙,王丰,张雯琼,等.水力振荡器在复杂结构井中的应用[J].石油机械,2015,43(4):54-58. WANG Jianlong,WANG Feng,ZHANG Wenqiong,et al.Application of hydraulic oscillator in complex wells[J].China Petroleum Machiner,2015,43(4):54-58.
    [19]
    廖腾彥,余丽彬,李俊胜,吉尔萨尔致密砂岩油藏工厂化水平井钻井技术[J].石油钻探技术,2014,42(6):30-33. LIAO Tengyan,YU Libin,LI Junsheng,A factory-like drilling technology of horizontal wells for tight reservoirs in Jimusaer Area[J].Petroleum Drilling Techiques,2014,42(6):30-33.
  • Related Articles

    [1]GE Luo. Experimental Study on the Migration and Adsorption of Gel Profile Control Agent in Medium-Permeability Sandstone in the Sabei Block of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 119-125. DOI: 10.11911/syztjs.2023063
    [2]WANG Qing, ZHANG Jiawei, SUN Minghao, JI Guodong, WANG Haige, SUN Xiaofeng. The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(2): 54-60. DOI: 10.11911/syztjs.2023006
    [3]LI Yuhai, LI Bo, LIU Changpeng, ZHENG Ruiqiang, LI Xiangyong, JI Bo. ROP Improvement Technology for Horizontal Shale Oil Wells in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 9-13. DOI: 10.11911/syztjs.2021085
    [4]LIU Yonggui. Optimization and Application of High Performance Water-Based Drilling Fluid for Horizontal Wells in Daqing Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35-39. DOI: 10.11911/syztjs.2018090
    [5]YANG Zhiguang. The Latest Proposals for the Advancement and Development of Drilling and Completion Technology in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 1-10. DOI: 10.11911/syztjs.201606001
    [6]Ai Chi, Hu Chaoyang, Cui Yueming. Casing Optimization for Delaying Casing Damage in the Datum Bed of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(6): 7-12. DOI: 10.11911/syztjs.201506002
    [7]Hou Jie, Liu Yonggui, Li Hai. Application of High-Performance Water-Based Drilling Fluid for Horizontal Wells in Tight Reservoirs of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(4): 59-65. DOI: 10.11911/syztjs.201504011
    [8]Chen Shaoyun, Li Aihui, Li Ruiying, Wang Chu, Liu Jinwei. Horizontal Well Drilling Technology in Shallow Heavy Oil Recovery in Block Puqian 12 of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 126-130. DOI: 10.11911/syztjs.201501022
    [9]Li Ruiying, Wang Feng, Chen Shaoyun, Liu Jinwei. ROP Improvement in Deep Formations in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 38-43. DOI: 10.11911/syztjs.201501007
    [10]Yang Juesuan. Matching Technology and Application of Gas Drilling in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(6): 47-50. DOI: 10.3969/j.issn.1001-0890.2012.06.010
  • Cited by

    Periodical cited type(33)

    1. 肖沣峰,杨丽丽,吴家乐,冯尚江,邱士鑫,蒋官澄. 蓖麻油基环保水性聚氨酯成膜剂CWPU. 钻井液与完井液. 2025(02): 201-208 .
    2. 宋瀚轩,叶艳,郑连杰,孙振玮,周童,张謦文. 钻井液微纳米封堵性能评价方法研究进展. 应用化工. 2024(02): 383-385 .
    3. 李成,李伟,王波,张文哲,李锦锋,王军,常世豪. 微纳米孔缝封堵评价方法研究进展与展望. 科技通报. 2023(01): 18-24+31 .
    4. 孙志刚,李骏函,孙明杰,张茂稳,王立锋. 梨树断陷致密承压封堵钻井液技术研究. 广州化工. 2023(04): 186-188 .
    5. 李雨洋. 钻井液封堵性能对泥页岩井壁稳定的影响研究. 石化技术. 2023(05): 148-150 .
    6. 侯杰,谷玉堂,刘兴君,李浩东,李细鸿. 太阳页岩气田海坝区块安全钻进钻井液技术. 采油工程. 2023(01): 44-49+84 .
    7. 尹家峰,王晓军,鲁政权,步文洋,孙磊,景烨琦,孙云超,闻丽. 辽河大民屯凹陷页岩油储层强封堵恒流变油基钻井液技术. 特种油气藏. 2023(04): 163-168 .
    8. 付毓伟,罗兵,叶政蔚,肖鹏. 水基钻井液用泥页岩抑制剂研究探讨. 石化技术. 2023(11): 177-179 .
    9. 潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 .
    10. 侯杰,尹华洲,刘兴君,杨斯超. 钻采工程钻井液概算编制方法优化设计. 采油工程. 2023(04): 62-64+76 .
    11. 司西强,王中华,吴柏志. 中国页岩油气水平井水基钻井液技术现状及发展趋势. 精细石油化工进展. 2022(01): 42-50 .
    12. 徐志勇. 高性能水基钻井液技术研究进展. 西部探矿工程. 2022(05): 76-77+79 .
    13. 崔磊,董明,石昌森,郭金玉,李艳军,李英武. 高性能仿油基钻井液在L26-PX井的应用. 西部探矿工程. 2022(07): 68-69+73 .
    14. 何剑平. 水基钻井液用泥页岩抑制剂研究现状. 西部探矿工程. 2022(08): 83-84+87 .
    15. 徐浩,谢鑫,唐玉华,王媛媛,金晶. 疏水型高性能水基钻井液在YC1侧水平井中的应用研究. 精细石油化工进展. 2022(04): 6-10 .
    16. 施连海,李春吉. 威HX-4井水平段钻进技术研究与应用. 辽宁化工. 2022(11): 1647-1649+1653 .
    17. 殷柏涛. 大庆油田致密油藏钻井液技术发展历程. 西部探矿工程. 2022(10): 103-105+108 .
    18. 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价. 石油钻探技术. 2021(01): 59-66 . 本站查看
    19. 盛勇,叶艳,朱金智,宋瀚轩,张震,周广旭,王涛. 内核纳米乳液用于塔西南地区钻井液的优化. 钻井液与完井液. 2021(02): 170-175 .
    20. 侯杰,李浩东,于兴东,杨决算. 松辽盆地陆相致密油井壁失稳机理及钻井液对策. 钻井液与完井液. 2021(05): 598-604 .
    21. 李发华. 大庆油田中浅层水平井水基钻井液技术研究与应用. 西部探矿工程. 2020(03): 121-124 .
    22. 荣鹏飞. 高性能钻井液技术在大庆QP-X5井中的应用. 西部探矿工程. 2020(03): 71-73 .
    23. 王晓军,白冬青,孙云超,李晨光,鲁政权,景烨琦,刘畅,蒋立洲. 页岩气井强化封堵全油基钻井液体系——以长宁—威远国家级页岩气示范区威远区块为例. 天然气工业. 2020(06): 107-114 .
    24. 左富银,苏俊霖,李立宗,赵洋,曾意晴. 有机纳米封堵剂的研究现状及存在问题分析. 化学世界. 2020(11): 733-737 .
    25. 左富银,苏俊霖,黄进军,李立宗,赵洋,秦祖海. 泥页岩微裂缝微观封堵模拟. 化学世界. 2020(12): 822-828 .
    26. 高锐. 大庆油田致密油藏开发钻井提速技术浅析. 石油工业技术监督. 2019(01): 54-57 .
    27. 曾文韬,许明标,由福昌. 泥页岩纳—微米微孔隙封堵评价方法. 能源与环保. 2019(03): 73-76+160 .
    28. 刘卫东,朱晓虎,蒋文海,樊萍,王悦和,都炳锋. 页岩微裂缝模拟实验评价. 钻采工艺. 2019(02): 104-107+7 .
    29. 苗立生. 强抑制强封堵水基钻井液在大庆致密油藏的应用. 西部探矿工程. 2019(06): 93-96 .
    30. 吴迪. 超低压地层防漏堵漏技术研究与应用. 西部探矿工程. 2019(06): 103-106 .
    31. 张仁彪. 大庆中浅层低成本水基钻井液技术研究与应用. 石油石化节能. 2019(07): 11-14+2 .
    32. 刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用. 石油钻探技术. 2018(05): 35-39 . 本站查看
    33. 杨丽,唐清明,兰林,夏海英,牛静,黄璜. 一种页岩封堵性评价测试方法. 钻井液与完井液. 2018(05): 50-54 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (8173) PDF downloads (15082) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return