页岩表面甲烷气吸附机理及影响因素研究

张建阔

张建阔. 页岩表面甲烷气吸附机理及影响因素研究[J]. 石油钻探技术, 2017, 45(2): 101-106. DOI: 10.11911/syztjs.201702017
引用本文: 张建阔. 页岩表面甲烷气吸附机理及影响因素研究[J]. 石油钻探技术, 2017, 45(2): 101-106. DOI: 10.11911/syztjs.201702017
ZHANG Jiankuo. The Mechanism and Influencing Factors of Methane Adsorption on Shale Surfaces[J]. Petroleum Drilling Techniques, 2017, 45(2): 101-106. DOI: 10.11911/syztjs.201702017
Citation: ZHANG Jiankuo. The Mechanism and Influencing Factors of Methane Adsorption on Shale Surfaces[J]. Petroleum Drilling Techniques, 2017, 45(2): 101-106. DOI: 10.11911/syztjs.201702017

页岩表面甲烷气吸附机理及影响因素研究

详细信息
    作者简介:

    张建阔(1974—),男,河北保定人,1999年毕业于大庆石油学院石油工程专业,高级工程师,主要从事钻井工程与技术方面的研究和管理工作。

  • 中图分类号: TE311+.2

The Mechanism and Influencing Factors of Methane Adsorption on Shale Surfaces

  • 摘要: 页岩表面甲烷气的吸附机理及影响因素研究对于准确预测页岩气藏的可采储量至关重要,为此利用MS软件,采用巨正则蒙特卡罗方法建立了页岩气在泥页岩地层中的吸附模型,对页岩气在地层中的存在状态进行了分子动力学模拟。分别用石墨代替有机质干酪根、二氧化硅晶体代替黏土矿物、甲烷气(CH4)代替页岩气,模拟了不同大小孔隙石墨和不同极性二氧化硅表面CH4的吸附过程,分析了吸附状态、吸附能等参数。分子模拟结果表明,CH4与二氧化硅表面的作用以库仑力为主,吸附能和吸附量随表面极性增强而降低;CH4与石墨表面的作用以范德华力为主,吸附体系总能量和吸附能均随孔隙直径增大而降低,因此CH4的吸附厚度和吸附态CH4的比例也随之减小。研究表明,有机质是CH4吸附的主要载体,石墨对CH4的吸附能力远大于二氧化硅,且CH4在石墨表面的吸附为多层的物理吸附,是影响页岩储层CH4储量的主要因素。
    Abstract: Understanding the mechanism of methane adsorption on shale surfaces and the key influential factors is very critical for the accurate prediction of shale gas EUR.In this paper,a model for gas adsorption in shale was built based on the Grand Canonical Monte Carlo (GCMC) method in MS software.In this model,the molecular dynamics of shale gas were simulated to reflect gas existence state in shale reservoirs.The process of methane (CH4) adsorption in graphite with varying pore size and also on the surface of silica with different polarity was simulated using graphite to replace organic kerogen,silica crystals to replace clay minerals,and methane to replace shale gas.The purpose was to analyze the adsorption state,adsorption energy,and other parameters.The results of molecular simulation showed that the interaction between CH4 and silica surface is dominated by Coulomb force,in which the adsorption energy and the adsorption volume decrease with an increase in surface polarity.On the other hand,the interaction between CH4 and the graphite surface is dominated by van der Waals force,in which both total system energy and adsorption energy decrease with the increase in pore size.The research results in the paper indicates that organic matter is the main carrier of CH4 adsorption and that the CH4 adsorption capacity of graphite is much larger than that of silica.Further,the adsorption of CH4 on the graphite surface is a multi-layer physical adsorption,and it is the major influencing factor in CH4 reserves in shale reservoirs.
  • [1] 李艳丽.页岩气储量计算方法探讨[J].天然气地球科学,2009,20(3):466-470. LI Yanli.Calculation methods of shale gas reserves[J].Natural Gas Geoscience,2009,20(3):466-470.
    [2] 李相方,蒲云超,孙长宇,等.煤层气与页岩气吸附/解吸的理论再认识[J].石油学报,2014,35(6):1113-1129. LI Xiangfang,PU Yunchao,SUN Changyu,et al.Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J].Acta Petrolei Sinica,2014,35(6):1113-1129.
    [3] 熊健,刘向君,梁利喜.甲烷在官能团化石墨中吸附的分子模拟[J].石油学报,2016,37(12):1528-1536. XIONG Jian,LIU Xiangjun,LIANG Lixi.Molecular simulation for methane adsorption in surface functionalized graplite[J].Acta Petrolei Sinica,2013,37(12):1528-1536.
    [4] 陈昌国,辜敏,鲜学福.煤的原子分子结构及吸附甲烷机理研究进展[J].煤炭转化,2003,26(4):5-9,15. CHEN Changguo,GU Min,XIAN Xuefu.Study on structure of coal and adsorption mechanism of methane on it[J].Coal Conversion,2003,26(4):5-9,15.
    [5]

    HU Wenxuan,FU Qi,LU Xiancai,et al.Study of pressure and phase transition of gas(oil) bearing fluids system[J].Geological Journal of China Universities,1996,2(4):458-465.

    [6]

    WANNIARACHCHI W A M,RANJITH P G,PERERA M S A.Shale gas fracturing using foam-based fracturing fluid:a review[J].Environmental Earth Sciences,2017,76(2):91.

    [7] 李家宏.河东煤田中南部煤系页岩气与煤层气成藏特征对比研究[D].徐州:中国矿业大学,2016. LI Jiahong.Contrast of the reservoir forming characteristics between shale gas and coalbed methane in coal measure,central and southern Hedong Coalfield[D].Xuzhou:China University of Mining Technology,2016.
    [8] 张金川,薛会,张德明,等.页岩气及其成藏机理[J].现代地质,2003,17(4):466. ZHANG Jinchuan,XUE Hui,ZHANG Deming,et al.Shale gas and its accumulation mechanism[J].Geoscience,2003,17(4):466.
    [9] 关小旭,尹向艺,杨火海.中美页岩气储层条件对比[J].西南石油大学学报(自然科学版),2014,36(5):33-39. GUAN Xiaoxu,YIN Xiangyi,YANG Huohai.Contrast of shale gas reservoir condition in China and the United States[J].Journal of Southwest Petroleum University(Science Technology Edition),2014,36(5):33-39.
    [10]

    CURTIS J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.

    [11] 邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26. ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mechanism,geological characteristics and development strategy of nonmarine shale oil in China[J].Petroleum Exploration and Development,2013,40(1):14-26.
    [12] 张雪芬,陆现彩,张林晔,等.页岩气的赋存形式研究及其石油地质意义[J].地球科学进展,2010, 25(6):597-604. ZHANG Xuefen,LU Xiancai,ZHANG Linye,et al.Occurrences of shale gas and their petroleum geological significance[J].Advances in Earth Science,2010,25(6):597-604.
    [13] 秦亮.多段压裂页岩气水平井产能数值模拟研究[D].重庆:重庆大学,2016. QIN Liang.Study on simulation of multi-stage fracturing horizontal for shale gas well[D].Chongqing:Chongqing University,2016.
    [14] 刘曰武,苏中良,方虹斌,等.煤层气的解吸/吸附机理研究综述[J].油气井测试,2010,19(6):37-44. LIU Yuewu,SU Zhongliang,FANG Hongbin,et al.Review on CBM desorption/adsorption mechanism[J].Well Testing,2010,19(6):37-44.
    [15]

    CHAI Jingchun,LIU Shuyan,YANG Xiaoning.Molecular dynamics simulation of wetting on modified amorphous silica surface[J].Applied Surface Science,2009,255(22):9078-9084.

    [16]

    FRENKEL D,SMIT B.Understanding molecular simulation:from algorithms to applications[M].2nd ed.San Diego:Academic Press,1996:210-256.

    [17] 王三跃.褐煤结构的分子动力学模拟及量子化学研究[D].太原:太原理工大学,2004. WANG Sanyue.Study of lignite structure by molecular dynamics simulation and quantum chemistry[D].Taiyuan:Taiyuan University of Technology,2004.
    [18] 关欣,杨华,赵小军,等.聚乙烯在石墨表面结晶的分子动力学模拟[J].分子科学学报,2009,25(6):390-393. GUAN Xin,YANG Hua,ZHAO Xiaojun,et al.Molecular dynamics simulation on the crystallization of polyethylene on the graphite (001) surface[J].Journal of Molecular Science,2009,25(6):390-393.
    [19]

    LIANG Lijun,WANG Qi,WU Tao,et al.Molecular dynamics simulation on simulation on stability of insulin on graphene[J].Chinese Journal of Chemical Physics,2009,22(6):627-634.

  • 期刊类型引用(8)

    1. 林轩,白永强,张雁,吕秀丽,宋胜浩,姜继玉,张翠婷. 异形结构内甲烷赋存态模拟. 煤炭学报. 2021(12): 3988-3998 . 百度学术
    2. 朱凯. 基于页岩气微观赋存特征对储量计算方法的改进. 中国石油和化工标准与质量. 2019(09): 170-173 . 百度学术
    3. 黄瑞,陈军斌,王佳部,姚欢迎. 考虑水敏性的页岩黏土多相耦合甲烷吸附模型. 特种油气藏. 2019(05): 92-99 . 百度学术
    4. 陈志礼,宁正福,王庆,黄亮,齐荣荣,王金伟. 含水页岩甲烷吸附特性实验研究. 断块油气田. 2018(04): 510-514+548 . 百度学术
    5. 马斌玉,徐守余,陈麦雨,张江晖. 页岩的甲烷吸附能力影响因素综述. 海相油气地质. 2018(02): 31-38 . 百度学术
    6. 庞伟. 页岩气井吸附气产出贡献率确定方法. 石油钻探技术. 2018(03): 86-92 . 本站查看
    7. 廖勇,谭判,石文睿,冯爱国,何浩然. 涪陵页岩气储层产气性评价方法. 石油钻探技术. 2018(05): 69-75 . 本站查看
    8. 熊健,刘向君,梁利喜. 甲烷在页岩黏土矿物孔中的赋存力学机制. 断块油气田. 2017(04): 500-505 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  9090
  • HTML全文浏览量:  58
  • PDF下载量:  10857
  • 被引次数: 12
出版历程
  • 收稿日期:  2017-01-19
  • 修回日期:  2017-03-19
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回