自蔓燃化学点火火烧油层物理模拟研究

谢志勤

谢志勤. 自蔓燃化学点火火烧油层物理模拟研究[J]. 石油钻探技术, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060
引用本文: 谢志勤. 自蔓燃化学点火火烧油层物理模拟研究[J]. 石油钻探技术, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060
XIE Zhiqin. Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter[J]. Petroleum Drilling Techniques, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060
Citation: XIE Zhiqin. Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter[J]. Petroleum Drilling Techniques, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060

自蔓燃化学点火火烧油层物理模拟研究

详细信息
    作者简介:

    谢志勤(1966-),男,江苏常州人,1990年毕业于西南石油学院采油工程专业,2004年获浙江大学化学专业硕士学位,高级工程师,现从事稠油开采工艺的研发与推广工作。

  • 中图分类号: TE357.44

Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter

  • 摘要: 采用电点火火烧油层工艺开采稠油油藏时,存在点火温度高、点火成功率低等问题,为此引入自蔓燃技术,提出了自蔓燃化学点火方式。根据自蔓燃原理,以硝酸铵和柠檬酸为主要原料制备了自蔓燃点火剂,并制备了模拟岩心,然后在模拟试验装置上进行了模拟点火试验,分析了原油黏度、岩心孔隙度、含油饱和度、原油含水率对模拟岩心燃烧的影响。试验结果显示,自蔓燃点火剂的点火温度仅为100~200℃,最低可达98℃;随原油黏度升高,点火剂的点火温度升高;岩心孔隙度不影响点火剂的点火温度,但孔隙度越大,原油的燃烧程度和最高燃烧温度越高;含油饱和度不影响点火剂的点火温度和原油的最高燃烧温度,但含油饱和度越大原油燃烧程度越高;原油含水率对点火剂的点火温度、原油燃烧的最高温度和燃烧程度均有影响,原油含水率越低,点火温度越低,最高燃烧温度越高,燃烧程度越高。研究结果表明,自蔓燃化学点火能够安全可靠地点燃原油并进行火烧油层驱油。
    Abstract: The technology of electric ignition and in-situ combustion for heavy oil reservoir suffers from the fact that it has a high ignition temperature and a low ignition success rate.A chemical self-propagating igniter was introduced to solve these problems.Its effect and influence factors were analyzed by physical simulation.According to the principle of self-propagating,the ignition agent was prepared with ammonium nitrate and citric acid as the main raw material,and the simulated core was prepared.The simulated ignition test was carried out on a simulated test device.The influence of the viscosity of crude oil,core porosity,oil saturation and water content of crude oil on the combustion of simulated core was analyzed through experiments.The results showed that the ignition temperature of self-propagating igniting agent was only 100-200℃,and the minimum temperature was 98℃.The ignition temperature of igniter increased with the increasing of viscosity of crude oil.The porosity of the core did not affect the ignition temperature,but the degree of combustion and the highest combustion temperature could increase with the increasing porosity of the core.The oil saturation did not affect the ignition temperature and the highest burning temperature of the crude oil,but the degree of the oil combustion would increase with the increasing of the oil saturation.The water content of crude oil had an effect on the ignition temperature,the oil’s highest temperature and the degree of combustion of the crude oil.The ignition temperature and the highest combustion temperature would lower with the declining water content of crude oil,but in contrast,the burning degree would increase.The result showed that self-propagating chemical ignition could ignite the crude oil safely and reliably and carry out thermal flooding.
  • [1] 朱海琦.火驱电点火及其与其他点火方式的对比分析[J].内蒙古石油化工,2014,40(20):58-59. ZHU Haiqi.The comparison between fire-driven ignition and other ignition methods[J].Inner Mongolia Petrochemical Industry,2014,40(20):58-59.
    [2] 袁士宝,孙希勇,蒋海岩,等.火烧油层点火室内实验分析及现场应用[J].油气地质与采收率,2012,19(4):53-55. YUAN Shibao,SUN Xiyong,JIANG Haiyan,et al.Ignition experimental analysis of in-situ combustion under condition of preheating[J].Petroleum Geology and Recovery Efficiency,2012,19(4):53-55.
    [3] 谢志勤,贾庆升,蔡文斌,等.火烧驱油物理模型的研究及应用[J].石油机械,2002,30(8):4-6. XIE Zhiqin,JIA Qingsheng,CAI Wenbin,et al.Research and application of physical model of in-situ combustion[J].China Petroleum Machinery,2002,30(8):4-6.
    [4]

    PADYUKOV K L,LEVASHOV E A.Self-propagating high-temperature synthesis:a new method for the production of diamond-containing materials[J].Diamond Related Materials,1993,2(2/3/4):207-210.

    [5]

    TANG Chenglong,ZHANG Yingjia,HUANG Zuohua.Progress in combustion investigations of hydrogen enriched hydrocarbons[J].Renewable Sustainable Energy Reviews,2014,30(2):195-216.

    [6]

    SWITZER C,PIRONI P,GERHARD J I,et al.Self-sustaining smoldering combustion:a novel remediation process for non-aqueous-phase liquids in porous media[J].Environmental Science Technology,2009,43(15):5871-5877.

    [7]

    WU Dejian,SCHMIDT M,HUANG Xinyan,et al.Self-ignition and smoldering characteristics of coal dust accumulations in O2/N2 and O2/CO2 atmospheres[J].Proceedings of the Combustion Institute,2017,36(2):3195-3202.

    [8]

    TAO Mingyuan,HAN Dong,ZHAO Peng.An alternative approach to accommodate detailed ignition chemistry in combustion simulation[J].Combustion and Flame,2017,176:400-408.

    [9]

    RESTUCCIA F,PTAK N,REIN G.Self-heating behavior and ignition of shale rock[J].Combustion and Flame,2017,176:213-219.

    [10]

    LI Yao,ZHAO Jiupeng,JIANG Jiuxing,et al.Influence of oxygen pressure on combustion synthesis of ZnFe2O4[J].Materials Chemistry and Physics,2003,82(3):991-996.

    [11] 杨德伟,王世虎,王弥康,等.火烧油层的室内实验研究[J].石油大学学报(自然科学版),2003,27(2):51-54. YANG Dewei,WANG Shihu,WANG Mikang,et al.Experimental study on in-situ combustion[J].Journal of the University of Petroleum,China(Edition of Natural Science),2003,27(2):51-54.
    [12] 陈军斌,肖述琴,周芳德,等.火烧油层驱油特征的参数敏感性分析[J].应用力学学报,2003,20(1):18-23. CHEN Junbin,XIAO Shuqin,ZHOU Fangde,et al.The sensitivity analysis of parameters for in-situ combustion[J].Chinese Journal of Applied Mechanics,2003,20(1):18-23.
    [13] 关文龙,蔡文斌,王世虎,等.郑408块火烧油层物理模拟研究[J].石油大学学报(自然科学版),2005,29(5):58-61. GUAN Wenlong,CAI Wenbin,WANG Shihu,et al.Physical modeling research of in-situ combustion in Zheng-408 fireflood pilot[J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(5):58-61.
    [14] 刘其成,程海清,张勇,等.火烧油层物理模拟相似原理研究[J].特种油气藏,2013,20(1):111-114. LIU Qicheng,CHENG Haiqing,ZHANG Yong,et al.Study on similarity principles of physical simulation of in-situ combustion[J].Special Oil Gas Reservoirs,2013,20(1):111-114.
    [15] 蔡文斌,谢志勤,李友平,等.胜利王庄油田火烧驱油试验研究[J].石油天然气学报,2005,27(增刊2):397-398. CAI Wenbin,XIE Zhiqin,LI Youping,et al.Experiment of insitu combustion in Shengli Wangzhuang Oilfield[J].Journal of Oil Gas Technology,2005,27(supplement 2):397-398.
    [16] 柴利文,金兆勋.中深厚层稠油油藏火烧油层试验研究[J].特种油气藏,2010,17(3):67-69. CHAI Liwen,JIN Zhaoxun.Pilot study of in situ combustion for mid-deep thick heavy oil reservoir[J].Special Oil and Gas Reservoirs,2010,17(3):67-69.
  • 期刊类型引用(5)

    1. 邬青鑫,李乐泓,任梓寒,胡清萍,张懿帆,辛文宾,徐顺义. 蒸汽辅助重力泄油转燃烧关键参数研究. 石油化工应用. 2024(11): 55-60 . 百度学术
    2. 蒋海岩,谢佃和,李天月,袁士宝,牛犇,刘瑞春. 基于室内评价的稠油火驱化学添加剂效果分析. 中国科技论文. 2022(09): 945-953 . 百度学术
    3. 冷冰. 火驱同心双管分层注气管柱研制及试验. 特种油气藏. 2020(04): 149-155 . 百度学术
    4. 宋晓,王勇,潘竟军,王如燕,陈龙,李家燕. 火烧油层系统试井方法的建立和应用. 断块油气田. 2019(04): 519-523 . 百度学术
    5. 周朝,吴晓东,张同义,赵旭. 排液采气涡流工具结构参数优化实验研究. 石油钻探技术. 2018(06): 105-110 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  4841
  • HTML全文浏览量:  64
  • PDF下载量:  7360
  • 被引次数: 7
出版历程
  • 收稿日期:  2017-10-12
  • 修回日期:  2018-03-25
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回