页岩中超临界甲烷等温吸附模型研究

熊健, 刘向君, 梁利喜

熊健, 刘向君, 梁利喜. 页岩中超临界甲烷等温吸附模型研究[J]. 石油钻探技术, 2015, 43(3): 96-102. DOI: 10.11911/syztjs.201503018
引用本文: 熊健, 刘向君, 梁利喜. 页岩中超临界甲烷等温吸附模型研究[J]. 石油钻探技术, 2015, 43(3): 96-102. DOI: 10.11911/syztjs.201503018
Xiong Jian, Liu Xiangjun, Liang Lixi. Isothermal Adsorption Model of Supercritical Methane in Shale[J]. Petroleum Drilling Techniques, 2015, 43(3): 96-102. DOI: 10.11911/syztjs.201503018
Citation: Xiong Jian, Liu Xiangjun, Liang Lixi. Isothermal Adsorption Model of Supercritical Methane in Shale[J]. Petroleum Drilling Techniques, 2015, 43(3): 96-102. DOI: 10.11911/syztjs.201503018

页岩中超临界甲烷等温吸附模型研究

基金项目: 

国家自然科学基金联合基金重点项目"页岩气低成本高效钻完井技术基础研究"(编号:U1262209)和国家自然科学基金面上项目"硬脆性泥页岩地层井周裂缝形态调控岩石力学基础研究"(编号:51274172)资助.

详细信息
    作者简介:

    熊健(1986—),男,湖北荆州人,2009年毕业于长江大学石油工程专业,2012年获西南石油大学油气田开发工程专业硕士学位,在读博士研究生,主要从事页岩气开发等方面的研究.

  • 中图分类号: TE

Isothermal Adsorption Model of Supercritical Methane in Shale

  • 摘要: 针对甲烷在页岩储层中呈超临界状态吸附的特点,开展了页岩中超临界甲烷等温吸附模型的研究.引入过剩吸附量,对常规吸附模型(Langmuir,Freundlich,Expand-Langmuir,Langmuir-Freundlich,Toth,D-R和D-A等吸附模型)进行了修正,将常规吸附模型扩展为超临界吸附模型,利用相对误差评价各吸附模型修正前后对页岩中超临界甲烷等温吸附的拟合效果.通过分析模型拟合参数的物理意义,探讨了页岩的吸附特征及吸附机理.各吸附模型的拟合参数所反映的吸附机理存在一定的差异,其中多分子层BET模型(B-BET和T-BET)和Expand-Langmuir模型对部分页岩的拟合参数失去其物理意义,不适合用于页岩中超临界甲烷吸附特征研究,而Langmuir模型和D-A模型拟合的参数能反映页岩的吸附特征.对比页岩中超临界甲烷等温吸附拟合效果,各吸附模型修正后的拟合效果好于修正前,且Freundlich修正模型的拟合效果最差,Toth修正模型和D-R修正模型的拟合效果好于Langmuir修正模型,但总体上拟合效果不好,Langmuir-Freundlich修正模型和D-A修正模型的拟合效果较好.研究结果表明,D-A修正模型的拟合参数能更好地反映页岩中超临界甲烷的吸附特征,是描述页岩中超临界甲烷吸附特征比较理想的模型.
    Abstract: Methane may physically be absorbed on shale in a supercritical state within shale reservoirs. Based on these characteristics, research has been conducted for isothermal absorption models of supercritical methane in shale. Excess adsorption is introduced to correct conventional adsorption models, such as Langmuir, Freundlich, Expended-Langmuir, Langmuir-Freundlich, Toth, B-BET, T-BET, D-R and D-A. Thus, conventional adsorption models are expanded into supercritical adsorption models. In addition, relative error is used to assess fitting results for isothermal adsorption of supercritical methane on shale before and after correction for those adsorption models. By analyzing the physical significance of fitting parameters in these models, it is possible to investigate features and mechanisms of adsorption in shale. There are certain differences in absorption mechanisms reflected by fitting the parameters of the absorption models.In particular, multi-molecular layers BET models (B-BET and T-BET) and Expand-Langmuir model have no physical significance for some shale samples. Accordingly, these models can no longer be used to determine features of supercritical methane adsorption. Furthermore, fitting parameters generated through Langmuir model and D-A model can accurately reflect supercritical methane adsorption characteristics. Comparison of the fitting results shows that the corrected adsorption model fits better than the originalone. The corrected Freundlich model fits badly, while the corrected Toth and D-R models display better performances than the corrected Langmuir model. But the overall fitting performances are not satisfactory. The corrected Langmuir-Freundlich model and D-A model have better performance in terms of fit. Research results show that fitting parameters determined by using the corrected D-A model are suitable for fitting the supercritical isothermal adsorption of methane in shale. Accordingly, the corrected D-A model can be seen as a desirable model for representation of supercritical methane adsorption characteristics in shale.
  • [2] 张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18. Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.
    [3]

    Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.

    [4]

    Gasparik M,Ghanizadeh A,Bertier P,et al.High-pressure methane sorption isotherms of black shales from the Netherlands[J].Energy Fuels,2012,26(8):4995-5004.

    [5]

    Zhang Tongwei,Ellis G S,Ruppel S C,et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47:120-131.

    [6]

    Guo Shaobin.Experimental study on isothermal adsorption of methane gas on three shale samples from Upper Paleozoic strata of the Ordos Basin[J].Journal of Petroleum Science and Engineering,2013,110:132-138.

    [7] 郭为,熊伟,高树生,等.温度对页岩等温吸附/解吸特征影响[J].石油勘探与开发,2013,40(4):481-485. Guo Wei,Xiong Wei,Gao Shusheng,et al.Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas[J].Petroleum Exploration and Development,2013,40(4):481-485.
    [8] 郭为,熊伟,高树生,等.页岩气等温吸附/解吸特征[J].中南大学学报:自然科学版,2013,44(7):2836-2840. Guo Wei,Xiong Wei,Gao Shusheng,et al.Isothermal adsorption/desorption characteristics of shale gas[J].Journal of Central South University:Science and Technology,2013,44(7):2836-2840.
    [9] 高和群,曹海虹,丁安徐,等.海相页岩和陆相页岩等温吸附特性及控制因素[J].天然气地球科学,2013,24(6):1290-1297. Gao Hequn,Cao Haihong,Ding Anxu,et al.Isotherm adsorption characteristic of marine and continental shale and its controlling factors[J].Natural Gas Geoscience,2013,24(6):1290-1297.
    [10] 闫建萍,张同伟,李艳芳,等.页岩有机质特征对甲烷吸附的影响[J].煤炭学报,2013,38(5):805-811. Yan Jianping,Zhang Tongwei,Li Yanfang,et al.Effect of the organic matter characteristics on methane adsorption in shale[J].Journal of China Coal Society,2013,38(5):805-811.
    [11]

    Yuan Weina,Pan Zhejun,Li Xiao,et al.Experimental study and modelling of methane adsorption and diffusion in shale[J].Fuel,2014,117(Part A):509-519.

    [12] 赵天逸,宁正福,曾彦.页岩与煤岩等温吸附模型对比分析[J].新疆石油地质,2014,35(3):319-323. Zhao Tianyi,Ning Zhengfu,Zeng Yan.Comparative analysis of isothermal adsorption models for shales and coals[J].Xinjiang Petroleum Geology,2014,35(3):319-323.
    [13] 杨峰,宁正福,孔德涛,等.页岩甲烷吸附等温线拟合模型对比分析[J].煤炭科学技术,2013,41(11):86-89. Yang Feng,Ning Zhengfu,Kong Detao,et al.Comparison analysis on model of methane adsorption isotherms in shales[J].Coal Science and Technology,2013,41(11):86-89.
    [14] 林腊梅,张金川,韩双彪,等.泥页岩储层等温吸附测试异常探讨[J].油气地质与采收率,2012,19(6):30-32,41. Lin Lamei,Zhang Jinchuan,Han Shuangbiao,et al.Study in abnormal curves of isothermal adsorption of shale[J].Petroleum Geology and Recovery Efficiency,2012,19(6):30-32,41.
    [15]

    Ross D J,Bustin R M.Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J].Fuel,2007,86(17/18):2696-2706.

    [16] 张志英,杨盛波.页岩气吸附解吸规律研究[J].实验力学,2012,27(4):492-497. Zhang Zhiying,Yang Shengbo.On the adsorption and desorption trend of shale gas[J].Journal of Experimental Mechanics,2012,27(4):492-497.
    [17]

    Clarkson C R,Haghshenas B.Modeling of supercritical fluid adsorption on organic-rich shales and coal:SPE Unconventional Resources Conference-USA,The Woodlands,Texas,USA,April 10-12,2013[C].

    [18]

    Chareonsuppanimit P,Mohammad S A,Robinson R L Jr,et al.High-pressure adsorption of gases on shales:Measurements and modeling[J].International Journal of Coal Geology,2012,95:34-46.

    [19] 熊健,梁利喜,刘向君,等.基于吸附势理论的页岩对甲烷吸附特性[J].科技导报,2014,32(17):19-22. Xiong Jian,Liang Lixi,Liu Xiangjun,et al.Adsorption characteristics of shale to CH4 based on adsorption potential theory[J].Science Technology Review,2014,32(17):19-22.
    [20] 熊健,刘向君,梁利喜.基于吸附势理论的页岩吸附甲烷模型及其应用[J].成都理工大学学报:自然科学版,2014,41(5):604-611. Xiong Jian,Liu Xiangjun,Liang Lixi.Adsorption model of shale to CH4 based on adsorption potential theory and its application[J].Journal of Chengdu University of Technology:Science Technology Edition,2014,41(5):604-611.
    [21] 周理,周亚平,孙艳,等.超临界吸附及气体代油燃料技术研究进展[J].自然科学进展,2004,14(6):615-623. Zhou Li,Zhou Yaping,Sun Yan,et al.Research advances of supercritical adsorption and gas as alternative fuels[J].Progress in Natural Science,2004,14(6):615-623.
    [22] 杨兆彪,秦勇,高弟,等.超临界条件下煤层甲烷视吸附量、真实吸附量的差异及其地质意义[J].天然气工业,2011,31(4):13-16. Yang Zhaobiao,Qin Yong,Gao Di,et al.Differences between apparent and true adsorption quantity of coalbed methane under supercritical conditions and their geological significance[J].Natural Gas Industry,2011,31(4):13-16.
    [23]

    Dubinin M M.The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J].Chem Rev,1960,60:235-241.

    [24]

    Amankwah K A G,Schwarz J A.A modified approach for estimating pseudo-vapor pressures in the application of the Dubinin-Astakhov equation[J].Carbon,1995,33(9):1313-1319.

    [25]

    Reich R,Ziegler W T,Rogers K A.Adsorption of methane,ethane,and ethylene gases and their binary and ternary mixtures and carbon-dioxide on activated carbon at 212-301 K and pressures to 35 Atmospheres[J].Industrial Engineering Chemistry Process Design and Development,1980,19(3):336-344.

    [26] 崔永君,李育辉,张群,等.煤吸附甲烷的特征曲线及其在煤层气储集研究中的作用[J].科学通报,2005,50(增刊1):76-81. Cui Yongjun,Li Yuhui,Zhang Qun,et al.The adsorption characteristic curve of Coal methane and its role in coalbed methane reservoir research[J].Chinese Science Bulletin,2005,50(supplement 1):76-81.
    [27]

    Ozawa S,Kusumi S,Ogino Y.Physical adsorption of gases at high pressure,Ⅳ:an improvement of the Dubinin-Astakhov adsorption equation[J].Journal of Colloid and Interface Science,1976,56(1):83-91.

    [28]

    Ross D J,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.

    [29]

    Yang Feng,Ning Zhengfu,Liu Huiqing.Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin,China[J].Fuel,2014,115:378-384.

  • 期刊类型引用(18)

    1. 熊亮,曹海涛,樊浩,钱锋,江朋宇,陈先超. 深层页岩气吸附模型和物质平衡新方法. 科技和产业. 2024(13): 220-225 . 百度学术
    2. 丛奇,陈君青,卢贵武,姜福杰,庞礴,施砍园,杨晓斌,王玉莹,庞宏. 利用分子动力学模拟研究页岩吸附能力的影响因素及微观机理的综述. 中南大学学报(自然科学版). 2022(09): 3474-3489 . 百度学术
    3. 刘香禺,张烈辉,李树新,张介辉,赵玉龙,张芮菡,郭晶晶,唐慧莹,张帆. 考虑页岩多重吸附机制的超临界甲烷等温吸附模型. 石油学报. 2022(10): 1487-1499 . 百度学术
    4. 林海宇,熊健,刘向君. 川南龙马溪组页岩甲烷等温解吸特征研究. 油气藏评价与开发. 2021(01): 56-61 . 百度学术
    5. 李爱芬,韩文成,孙海,ASADULLAH Memon. 考虑多因素的页岩气吸附模型——以川东南五峰组—龙马溪组页岩为例. 煤炭学报. 2021(03): 1003-1013 . 百度学术
    6. 张明杰,刘浩,贾天让,龚泽,杨明鑫. 颗粒煤超临界态甲烷吸附相密度特征研究. 煤田地质与勘探. 2021(05): 105-113 . 百度学术
    7. 孟瑞艳. 影响页岩等温吸附测试曲线异常的因素分析. 中国煤炭地质. 2020(07): 4-8+39 . 百度学术
    8. 庞小婷,陈国辉,许晨曦,佟茂胜,倪彬午,包汉勇. 涪陵地区五峰组-龙马溪组页岩吸附-游离气定量评价及相互转化. 石油与天然气地质. 2019(06): 1247-1258 . 百度学术
    9. 陈志礼,宁正福,杜华明,黄亮,叶洪涛,张文通. 基于改进BP神经网络的页岩吸附量预测模型. 断块油气田. 2018(02): 208-212 . 百度学术
    10. 方帆,孙冲,舒向伟,朱忠云,方子和. 页岩中甲烷等温吸附量计算问题及方法改进. 石油实验地质. 2018(01): 71-77+89 . 百度学术
    11. 刘尚平,李希建,尹鑫,张培,李维维. 高温高压下页岩气等温吸附线拟合模型优选. 中国矿业. 2018(06): 160-166 . 百度学术
    12. 孙彩蓉,唐书恒,张松航,赵俊斌,魏建光,张廷强. 页岩等温吸附特征及吸附异常原因. 大庆石油地质与开发. 2017(05): 155-163 . 百度学术
    13. 唐润池,汪吉林,常溪溪,王林杰,亓宁. 超临界甲烷等温吸附模型对构造煤的适用性研究. 煤矿安全. 2017(06): 9-12 . 百度学术
    14. 黄海帆,李希建,李维维,沈仲辉. 页岩气吸附分子模拟中宏观影响因素微观化. 煤炭技术. 2017(06): 40-42 . 百度学术
    15. 李希建,李维维,黄海帆,沈仲辉. 深部页岩高温高压吸附特性分析. 特种油气藏. 2017(03): 129-134 . 百度学术
    16. 蒲明政,唐善法,姚逸风,周天元,薛汶举. 涪陵焦石坝地区页岩气吸附规律研究. 钻采工艺. 2017(04): 40-43+3 . 百度学术
    17. 赵春鹏,伦增珉,王卫红,刘华,王海涛. 储层条件下龙马溪组全直径页岩吸附实验. 断块油气田. 2016(06): 749-752 . 百度学术
    18. 郭怀志,潘保芝,张丽华,白雪. 页岩吸附模型及吸附气含气量计算方法进展. 地球物理学进展. 2016(03): 1080-1087 . 百度学术

    其他类型引用(34)

计量
  • 文章访问数:  3636
  • HTML全文浏览量:  79
  • PDF下载量:  4100
  • 被引次数: 52
出版历程
  • 收稿日期:  2014-09-25
  • 修回日期:  2015-03-31
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回