Citation: | XING Xuesong, YUAN Junliang, LI Zhonghui, et al. Determination of formation fracture pressure under high temperature and high pressure in deep water of the South China Sea [J]. Petroleum Drilling Techniques,2023, 51(6):18-24. DOI: 10.11911/syztjs.2023052 |
The deepwater strata in the northern South China Sea exhibit a high degree of under-compaction, weak cementation, low pressure-bearing capacity, and other mechanical characteristics. At the same time, due to the existence of a temperature field, the heat exchange between the formation and drilling fluid will produce an additional stress field, which will lead to lost circulation in the process of deepwater drilling and seriously affect the drilling efficiency and cementing quality. Therefore, it is urgent to clarify the influence of the temperature field on the additional stress. On the basis of elasticity, the numerical simulation method was used in this paper to establish an analytical model for periborehole stress with temperature considered. According to the existing formation fracture pressure model, the dynamic change law of formation fracture pressure in the deepwater environment of the South China Sea was determined by comprehensively considering the influence of temperature and time. The research results showed that a temperature change of the borehole wall and formation along with additional thermal stress gradually increased with the increase in the cycle time of the drilling fluid. Further, the maximum radial thermal stress was at a certain distance from the axis of the borehole, and the maximum tangential stress and the maximum vertical stress were at the borehole wall. When the temperature of the borehole wall decreased, the contraction of the borehole wall produced tensile stress and the periborehole stress decreased; the tangential stress and vertical stress decreased the most at the borehole wall, and the radial stress decreased the most at 1.65 times of the hole radius from the borehole axis. The deviation of fracture pressure considering the influence of temperature change was much lower than when not considering it. The research results show that temperature change has an impact on periborehole stress, and considering the influence of temperature can improve the prediction accuracy of formation fracture pressure, thus improving the prediction accuracy of the safety density window of the drilling fluid. This research can provide theoretical guidance for safe and efficient drilling in deepwater in the South China Sea.
[1] |
潘继平,金之均. 中国油气资源潜力及勘探战略[J]. 石油学报,2004,25(2):1–6. doi: 10.3321/j.issn:0253-2697.2004.02.001
PAN Jiping, JIN Zhijun. Potentials of petroleum resources and exploration strategy in China[J]. Acta Petrolei Sinica, 2004, 25(2): 1–6. doi: 10.3321/j.issn:0253-2697.2004.02.001
|
[2] |
孙宝江,张振楠. 南海深水钻井完井主要挑战与对策[J]. 石油钻探技术,2015,43(4):1–6.
SUN Baojiang, ZHANG Zhennan. Challenges and countermeasures for the drilling and completion of deepwater wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1–6.
|
[3] |
李中,方满宗,李磊. 南海西部深水钻井实践[J]. 石油钻采工艺,2015,37(1):92–95.
LI Zhong, FANG Manzong, LI Lei. Drilling practices of deepwater well in West of South China Sea[J]. Oil Drilling & Production Technology, 2015, 37(1): 92–95.
|
[4] |
SUN Qiliang, WU Shiguo, CARTWRIGHT J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315/316/317/318: 1–14. doi: 10.1016/j.margeo.2012.05.003
|
[5] |
方满宗,刘和兴,刘智勤,等. 南海西部深水高温高压钻井液技术研究与应用[J]. 中国海上油气,2017,29(1):89–94.
FANG Manzong, LIU Hexing, LIU Zhiqin, et al. Research and applications of deep water HTHP drilling fluid in western South China Sea[J]. China Offshore Oil and Gas, 2017, 29(1): 89–94.
|
[6] |
黄熠,杨进,王尔钧,等. 南海超高温高压气井裸眼完井测试关键技术[J]. 石油钻采工艺,2020,42(2):150–155. doi: 10.12358/j.issn.1001-5620.2021.04.005
HUANG Yi, YANG Jin, WANG Erjun, et al. Key technologies for the open hole completion testing of ultrahigh temperature and high pressure gas wells in the South China Sea[J]. Oil Drilling & Production Technology, 2020, 42(2): 150–155. doi: 10.12358/j.issn.1001-5620.2021.04.005
|
[7] |
陈建国,邓金根,袁俊亮,等. 页岩储层Ⅰ型和Ⅱ型断裂韧性评价方法研究[J]. 岩石力学与工程学报,2015,34(6):1101–1105.
CHEN Jianguo, DENG Jingen, YUAN Junliang, et al. Determination of fracture toughness of modes I and II of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering., 2015, 34(6): 1101–1105.
|
[8] |
高永德,董洪铎,胡益涛,等. 深水高温高压井钻井液当量循环密度预测模型及应用[J]. 特种油气藏,2022,29(3):138–143.
GAO Yongde, DONG Hongduo, HU Yitao, et al. Prediction model of equivalent circulating density of drilling fluid in deep HPHT wells and its application[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 138–143.
|
[9] |
李中,陈浩东,刘和兴,等. 深水窄密度窗口地层封堵承压钻井液技术[J]. 钻井液与完井液,2021,38(4):428–434.
LI Zhong, CHEN Haodong, LIU Hexing, et al. Drilling fluid technology for plugging and strengthening formations with narrow mud weight windows in deep water drilling[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 428–434.
|
[10] |
王磊. 基于瞬态热流固耦合的钻井井壁稳定性分析[J]. 断块油气田,2023,30(2):331–336.
WANG Lei. Wellbore stability analysis in drilling process based on transient thermo-fluid-solid coupling model[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 331–336.
|
[11] |
HUBBERT M K, WILLIS D G. Mechanics of hydraulic fractur-ing[J]. Transactions of the AIME, 1957, 210(1): 153–168.
|
[12] |
YUAN Junliang, ZHOU Jianliang, LIU Shujie, et al. An improved fracability-evaluation method for shale reservoirs based on new fracture toughness-prediction models[J]. SPE Journal, 2017, 22(5): 1704–1713. doi: 10.2118/185963-PA
|
[13] |
EATON B A. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10): 1353–1360. doi: 10.2118/2163-PA
|
[14] |
ANDERSON R A, INGRAM D S, ZANIER A M. Determining fracture pressure gradients from well logs[J]. Journal of Petroleum Technology, 1973, 25(11): 1259–1268. doi: 10.2118/4135-PA
|
[15] |
DAINES S R. The use of seismic data in the preparation of wells prognoses for wildcat wells[R]. SPE 10014, 1982.
|
[16] |
吴江,李炎军,张万栋,等. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):63–68.
WU Jiang, LI Yanjun, ZHANG Wandong, et al. Key drilling techniques of HTHP Horizontal wells in mid-deep strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63–68.
|
[17] |
LEE S, REILLY J, LOWE R, et al. Accurate pore pressure and fracture pressure predictions using seismic velocities: an aid to deep water exploration and drilling design[R]. SEG-1997-2013, 1997.
|
[18] |
刘玉石,周煜辉,黄克累. 井眼温度变化对井壁稳定的影响[J]. 石油钻采工艺,1996,18(4):1–4.
LIU Yushi, ZHOU Yuhui, HUANG Kelei. Temperature of borehole effect on well wall wtability[J]. Oil Drilling & Production Technology, 1996, 18(4): 1–4.
|
[19] |
罗鸣,吴江,陈浩东,等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术,2019,47(1):8–12.
LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-high temperature high pressure drilling technology for narrow safety density window strata in the western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8–12.
|
[20] |
ROCHA L A S, FALCÃO J L, GONÇALVES C J C, et al. Fracture pressure gradient in deepwater[R]. SPE 88011, 2004.
|
[21] |
李嗣贵,邓金根,蔚宝华,等. 高温井地层破裂压力计算技术[J]. 岩石力学与工程学报,2005(增刊2):5669–5673.
LI Sigui, DENG Jingen, YU Baohua, et al. Formation fracture pressure calculation in high temperatures wells[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(supplement2): 5669–5673.
|
[22] |
邓金根,刘杨,蔚宝华,等. 高温高压地层破裂压力预测方法[J]. 石油钻探技术,2009,37(5):43–46.
DENG Jingen, LIU Yang, YU Baohua, et al. Formation fracture pressure prediction method in high temperature and high pressure formations[J]. Petroleum Drilling Techniques, 2009, 37(5): 43–46.
|
[23] |
ORIJI A B, OGBONNA J F, A new fracture gradient prediction technique that shows good results in Gulf of Guinea wells[R]. SPE 161209, 2012.
|
[24] |
田波,周建良,刘正礼,等. 南海深水探井破裂压力计算模型研究[J]. 化学工程与装备,2014(11):40–43.
TIAN Bo, ZHOU Jianliang, LIU Zhengli, et al. Study on fracture pressure calculation model of South China Sea deepwater exploration wells[J]. Chemical Engineering & Equipment, 2014(11): 40–43.
|
[25] |
KINIK K, WOJTANOWICZ A K, GUMUS F, Temperature-induced uncertainty of the effective fracture pressures: assessment and control[R]. SPE 170316, 2014.
|
[26] |
贾利春,陈东,黄兵. 温度对岩石力学特性及井壁稳定性的影响[J]. 钻采工艺,2017,40(5):15–18.
JIA Lichun, CHEN Dong, HUANG Bing. Effects of temperature on rocks mechanics and wellbore stability[J]. Drilling & Production Technology, 2017, 40(5): 15–18.
|
[27] |
曹文科,邓金根,谭强,等. 深水钻井热交换作用下的井壁稳定性分析[J]. 中国安全生产科学技术,2017,13(6):53–57. doi: 10.11731/j.issn.1673-193x.2017.06.008
CAO Wenke, DENG Jingen, TAN Qiang, et al. Analysis on stability of borehole under the effect of heat exchange in deepwater drilling[J]. Journal of Safety Science and Technology, 2017, 13(6): 53–57. doi: 10.11731/j.issn.1673-193x.2017.06.008
|
[28] |
吴怡,谢仁军,刘书杰,等. 考虑温度效应的高温高压直井井壁稳定性规律[J]. 断块油气田,2019,26(2):253–256. doi: 10.6056/dkyqt201902025
WU Yi, XIE Renjun, LIU Shujie, et al. Wellbore stability rule of high temperature and high pressure vertical well considering temperature effect[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 253–256. doi: 10.6056/dkyqt201902025
|
[29] |
AHMED S A, MAHMOUD A A, ELKATATNY S, et al. Prediction of pore and fracture pressures using support vector machine[R]. IPTC 19523, 2019.
|
[30] |
徐芝纶. 弹性力学: 上册[M]. 4版. 北京: 高等教育出版社, 2006.
XU Zhilun. Elasticity mechanics: volume 1[M]. 4th ed. Beijing: Higher Education Press, 2006.
|
[31] |
李忠慧,赵毅,楼一珊,等. 海洋深水井钻井过程中井筒温度的变化规律[J]. 天然气工业,2019,39(10):88–94.
LI Zhonghui, ZHAO Yi, LOU Yishan, et al. Changing laws of wellbore temperature during offshore deepwater well drilling.[J]. Natural Gas Industry, 2019, 39(10): 88–94.
|
1. |
史配铭,倪华峰,贺会锋,石崇东,李录科,张延兵. 鄂尔多斯盆地深层煤岩气水平井水平段安全钻井关键技术. 石油钻探技术. 2025(01): 17-23 .
![]() | |
2. |
罗翰. 威荣页岩气田水平井地质导向技术及应用. 西部探矿工程. 2024(04): 61-65 .
![]() | |
3. |
何新星,严焱诚,朱礼平,王希勇,朱化蜀,王治国. 四川盆地威荣深层页岩气安全与提速钻井技术. 石油实验地质. 2024(03): 630-637 .
![]() | |
4. |
程童,黎波,张中,黄兰,张庆,卢海兵,李晓晨,陈小龙,巩建平. 渝西区块深层页岩气井钻头优选研究. 四川地质学报. 2024(S1): 15-20 .
![]() | |
5. |
Yaoran Wei,Yongcun Feng,Zhenlai Tan,Tianyu Yang,Shuang Yan,Xiaorong Li,Jingen Deng. Simultaneously improving ROP and maintaining wellbore stability in shale gas well:A case study of Luzhou shale gas reservoirs. Rock Mechanics Bulletin. 2024(03): 91-103 .
![]() |
|
6. |
毕开原. 我国页岩气钻完井关键技术现状及发展趋势. 石油机械. 2024(11): 12-20+28 .
![]() | |
7. |
钟健. 威远深层页岩气311.1 mm井段钻井提速技术研究与试验. 中国石油和化工标准与质量. 2023(05): 46-48+51 .
![]() | |
8. |
赵文彬,宋文豪. 永川黄202区块页岩气水平井钻井提速对策分析. 天然气勘探与开发. 2023(02): 127-134 .
![]() | |
9. |
祝效华,李瑞,刘伟吉,李枝林,陆灯云. 深层页岩气水平井高效破岩提速技术发展现状. 西南石油大学学报(自然科学版). 2023(04): 1-18 .
![]() | |
10. |
纪经,冯颖韬,王有伟,张浩,崔策,黄峰,袁彬. 控压固井候凝阶段井口回压控制方法研究与应用. 石油化工应用. 2023(11): 32-35 .
![]() | |
11. |
袁光杰,付利,王元,郭凯杰,陈刚. 我国非常规油气经济有效开发钻井完井技术现状与发展建议. 石油钻探技术. 2022(01): 1-12 .
![]() | |
12. |
甘心. 页岩气钻井用机械式螺杆冲击器结构设计与应用. 吉林大学学报(地球科学版). 2022(04): 1215-1222 .
![]() | |
13. |
贾利春,李枝林,张继川,陶怀志,李雷,黄崇君,魏萧. 川南海相深层页岩气水平井钻井关键技术与实践. 石油钻采工艺. 2022(02): 145-152 .
![]() | |
14. |
李奎. 泸州深层页岩气水平段钻井提速关键技术. 钻探工程. 2022(05): 100-105 .
![]() | |
15. |
陆亚秋,梁榜,王超,刘超,吉靖. 四川盆地涪陵页岩气田江东区块下古生界深层页岩气勘探开发实践与启示. 石油与天然气地质. 2021(01): 241-250 .
![]() | |
16. |
李红岩,王鹏涛,郭世炎,刘斌,张献喻,赵宇璇. 水基钻井液用新型页岩抑制剂的制备及性能研究. 当代化工. 2021(02): 418-421 .
![]() | |
17. |
龚德章. 页岩气“井工厂”开发模式及水平井眼轨迹控制技术. 工业技术创新. 2021(03): 104-110 .
![]() | |
18. |
朱维耀,陈震,宋智勇,吴建发,李武广,岳明. 中国页岩气开发理论与技术研究进展. 工程科学学报. 2021(10): 1397-1412 .
![]() | |
19. |
王建龙,于志强,苑卓,冯冠雄,柳鹤,郭云鹏. 四川盆地泸州区块深层页岩气水平井钻井关键技术. 石油钻探技术. 2021(06): 17-22 .
![]() | |
20. |
石崇东,王万庆,史配铭,杨勇. 盐池区块深层页岩气水平井钻井关键技术研究. 石油钻探技术. 2021(06): 23-28 .
![]() | |
21. |
尹建,刘菊,黎俊吾. 川南高温深层页岩气工程技术支撑管理模式及其应用. 天然气技术与经济. 2021(06): 26-29+49 .
![]() | |
22. |
孙焕泉,周德华,蔡勋育,王烽,冯动军,卢婷. 中国石化页岩气发展现状与趋势. 中国石油勘探. 2020(02): 14-26 .
![]() | |
23. |
邓虹,殷鸽,王狮军,王乾,崔金明,刘青松. 适用于深层页岩气储层的高效水基钻井液体系研究及应用. 钻采工艺. 2020(01): 90-93+12-13 .
![]() | |
24. |
林安国. 涪陵页岩气田白马区块钻井难点及对策. 江汉石油职工大学学报. 2020(03): 30-32 .
![]() | |
25. |
李文哲,钟成旭,蒋雪梅,李郑涛,曹世平,吴双. 考虑壁面滑移效应的高密度油基钻井液流变性研究. 石油钻探技术. 2020(06): 28-32 .
![]() | |
26. |
刘元宪. 涪陵深层页岩气水平井高效油基钻井液体系研究. 当代化工. 2019(01): 179-182 .
![]() | |
27. |
余道智. 深层页岩气钻井关键技术难点及对策研究. 能源化工. 2019(01): 69-73 .
![]() | |
28. |
曾义金. 深层页岩气开发工程技术进展. 石油科学通报. 2019(03): 233-241 .
![]() | |
29. |
张相权. 川东南地区深层页岩气水平井压裂改造实践与认识. 钻采工艺. 2019(05): 124-126 .
![]() | |
30. |
付建红,苏昱,姜伟,钟成旭,李郑涛. 深层页岩气水平井井筒瞬态温度场研究与应用. 西南石油大学学报(自然科学版). 2019(06): 165-173 .
![]() | |
31. |
蔡世荣,任克雄. 宜昌地区页岩气勘探开发前景及开发模式探析. 国土资源情报. 2019(09): 46-51 .
![]() | |
32. |
刘伟,何龙,胡大梁,李文生,焦少卿. 川南海相深层页岩气钻井关键技术. 石油钻探技术. 2019(06): 9-14 .
![]() | |
33. |
唐诚,王志战,陈明,王崇敬,梁波,施强. 基于X射线荧光元素录井的深层页岩气精准地质导向技术. 石油钻探技术. 2019(06): 103-110 .
![]() | |
34. |
窦玉玲,唐志军,徐云龙,席镜阳. 涪陵江东区块三维水平井优快钻井技术——以焦页91平台为例. 探矿工程(岩土钻掘工程). 2019(02): 55-59 .
![]() |