Citation: | LI Wei, XIA Yang, CHEN Xi. Design and Experimental Study of an RFID Intelligent Sliding Sleeve[J]. Petroleum Drilling Techniques, 2019, 47(6): 83-88. DOI: 10.11911/syztjs.2019123 |
In order to overcome the deficiencies of conventional horizontal well staged fracturing technologies, including complicated operations, the inability to achieve full drift size and limited number of fracturing stages, a horizontal well staged fracturing technology with an RFID intelligent sliding sleeve was proposed. The pipe string structure and technical challenges of RFID intelligent sliding sleeve fracturing technology were studied, on the basis of analyzing the characteristics of horizontal staged fracturing technologies and experiments carried out scheme optimization, simulation analysis, unit test and indoor prototype test for an RFID intelligent sliding sleeve structure. The test results showed that the RFID intelligent sliding sleeve could be smoothly opened to the preset openness under the temperature of 120 °C and pressure difference of 0–70 MPa. The RFID tag ball can control the window of RFID intelligent sliding to the preset openness, with RFID communication having an excellent success rate. The reesults indicated that RFID intelligent sliding sleeve-based horizontal well staged fracturing technology could reduce the cost of horizontal well fracturing, improve the efficiency of oil and gas development, and provide technical support for the intelligent, cost-saving and efficient development of oil and gas, with good foundation for future application.
[1] |
秦金立. 选择性重复压裂工具关键技术[J]. 石油钻探技术, 2018, 46(4): 71–77.
QIN Jinli. Key techniques of selective refracturing tools[J]. Petroleum Drilling Techniques, 2018, 46(4): 71–77.
|
[2] |
雷林,张龙胜,熊炜,等. 武隆区块常压页岩气水平井分段压裂技术[J]. 石油钻探技术, 2019, 47(1): 76–82.
LEI Lin, ZHANG Longsheng, XIONG Wei, et al. Multi-stage fracturing technology of normally pressured shale gas in horizontal wells in the Wulong Block[J]. Petroleum Drilling Techniques, 2019, 47(1): 76–82.
|
[3] |
孙荣华,陈阳,王绍先,等. 水平井分段控流完井技术应用效果评价方法[J]. 石油钻探技术, 2019, 47(4): 41–46.
SUN Ronghua, CHEN Yang, WANG Shaoxian, et al. Evaluating the application effect for staged fluid control completion technology in horizontal wells[J]. Petroleum Drilling Techniques, 2019, 47(4): 41–46.
|
[4] |
CASTRO L, WATKINS T, BEDORE B A, et al. Reducing operational time, fluid usage, hydraulic horsepower, risk, and downtime: targeted fracs using CT-enabled frac sleeves[R]. SPE 154391, 2012.
|
[5] |
RYTLEWSKI G L, LIMA J, DOLAN V B. Novel technology replaces perforating and improves efficiency during multiple layer fracturing operations[R]. SPE 107730, 2007.
|
[6] |
RYTLEWSKI G L. Multiple-layer completions for efficient treatment of multilayer reservoirs[R]. SPE 112476, 2008.
|
[7] |
TOUGH J M, MASON J, BIEDERMANN R B, et al. Radio frequency identification of remotely operated horizontal frac[R]. SPE 143940, 2011.
|
[8] |
秦金立,戴文潮,万雪峰, 等. 无线射频识别技术在多级滑套压裂工具中的应用探讨[J]. 石油钻探技术, 2013, 41(3): 123–126.
QIN Jinli, DAI Wenchao, WAN Xuefeng, et al. Application of radio frequency identification in multistage fracturing sleeve tools[J]. Petroleum Drilling Technology, 2013, 41(3): 123–126.
|
[9] |
李奎为,张冲,李洪春. 水平井水力喷射多级压裂工具研制与应用[J]. 石油机械, 2013, 41(12): 18–21.
LI Kuiwei, ZHANG Chong, LI Hongchun. Development and application of the horizontal hydraulic jet multistage fracturing tool[J]. China Petroleum Machinery, 2013, 41(12): 18–21.
|
[10] |
郭朝辉,魏辽,马兰荣. 新型无级差套管滑套及其应用[J]. 石油机械, 2012, 40(10): 91–94.
GUO Zhaohui, WEI Liao, MA Lanrong. Newtype stepless casing sliding sleeve and its application[J]. China Petroleum Machinery, 2012, 40(10): 91–94.
|
[11] |
李光泉,戴文潮. 无线射频识别滑套关键技术研究[J]. 石油机械, 2013, 41(5): 73–75.
LI Guangquan, DAI Wenchao. Research on key technology for RFID sliding sleeve[J]. China Petroleum Machinery, 2013, 41(5): 73–75.
|
[12] |
韩永亮,刘志斌,程智远,等. 水平井分段压裂滑套的研制与应用[J]. 石油机械, 2011, 39(2): 64–65.
HAN Yongliang, LIU Zhibin, CHENG Zhiyuan, et al. The development and application of the sectional fracture sliding sleeve in horizontal wells[J]. China Petroleum Machinery, 2011, 39(2): 64–65.
|
[13] |
杨同玉,魏辽,冯丽莹,等. 水平井趾端压裂关键工具设计与试验[J]. 石油钻探技术, 2018, 46(4): 54–58.
YANG Tongyu, WEI Liao, FENG Liying, et al. Design and test of key tools in horizontal well toe-end fracturing[J]. Petroleum Drilling Techniques, 2018, 46(4): 54–58.
|
[14] |
张锦宏. 中国石化石油工程技术现状及发展建议[J]. 石油钻探技术, 2019, 47(3): 9–17.
ZHANG Jinhong. Current status and outlook for the development of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9–17.
|
[15] |
孙联中. 致密油水平井压裂开发成本控制策略[J]. 经济师, 2014(1): 216.
SUN Lianzhong. Tight oil horizontal well fracturing development cost control strategy[J]. China Economist, 2014(1): 216.
|
[16] |
宁云才,钟敏,魏漪,等. 低油价下致密油资源经济效益评价研究[J]. 中国矿业, 2017, 26(2): 51–57,65.
NING Yuncai, ZHONG Min, WEI Yi, et al. Evaluation of the tight oil resources economic benefit under the low oil price[J]. China Mining Magazine, 2017, 26(2): 51–57,65.
|
[17] |
王曙艳. 吉林油田压裂施工成本控制研究[D]. 长春: 吉林大学, 2012.
WANG Shuyan. Research on cost control of the fracturing construction of Jilin Oilfield[D]. Changchun: Jilin University, 2012.
|
[18] |
王晓泉,张守良,吴奇,等. 水平井分段压裂多段裂缝产能影响因素分析[J]. 石油钻采工艺, 2009, 31(1): 73–76.
WANG Xiaoquan, ZHANG Shouliang, WU Qi, et al. Factors affecting the productivity of multi-section fractures in subsection fracturing of horizontal wells[J]. Oil Drilling & Production Technology, 2009, 31(1): 73–76.
|
[19] |
曹学军,唐祖兵,李晖,等. 川西地区小井眼水平井多级压裂技术研究及应用[J]. 石油地质与工程, 2014, 28(5): 119–122.
CAO Xuejun, TANG Zubing, LI Hui, et al. Research and application of multi-stage fracturing technology in small hole horizontal wells in Western Sichuan[J]. Petroleum Geology and Engineering, 2014, 28(5): 119–122.
|
[20] |
管保山,刘玉婷,梁利,等. 页岩油储层改造和高效开发技术[J]. 石油钻采工艺, 2019, 41(2): 212–223.
GUAN Baoshan, LIU Yuting, LIANG Li, et al. Shale oil reservoir reconstruction and efficient development technology[J]. Oil Drilling & Production Technology, 2019, 41(2): 212–223.
|
[21] |
仝少凯,高德利. 水力压裂基础研究进展及发展建议[J]. 石油钻采工艺, 2019, 41(1): 101–115.
TONG Shaokai, GAO Deli. Basic research progress and development suggestions on hydraulic fracturing[J]. Oil Drilling & Production Technology, 2019, 41(1): 101–115.
|
[22] |
雷鸿翔.基于RFID通讯智能滑套结构设计与分析[D].成都: 西南石油大学, 2017.
LEI Hongxiang. Based on RFID communication intelligent sliding sleeve structure design and analysis[D]. Chengdu: Southwest Petroleum University, 2017.
|
[1] | WANG Guorong, LYU Zhiyu, TANG Yang, GONG Yan. Experimental Study on Feasibility of Double-Layer Pipe Dual-Gradient Drilling in Offshore Deepwater Oil and Gas Fields[J]. Petroleum Drilling Techniques, 2025, 53(3): 40-46. DOI: 10.11911/syztjs.2025059 |
[2] | CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104 |
[3] | ZOU Deyong, WANG Gaoming, XING Chen. Experimental Study on Igneous Rock Abrasiveness[J]. Petroleum Drilling Techniques, 2020, 48(3): 41-46. DOI: 10.11911/syztjs.2020047 |
[4] | SU Zhenguo, TANG Zhijun. The Design and Field Testing of Two-Stage and Two-Speed Drilling Tools[J]. Petroleum Drilling Techniques, 2019, 47(1): 59-64. DOI: 10.11911/syztjs.2019010 |
[5] | PENG Zhenhua, ZHANG Yuan, DING Wen, WU Chao, SUN Bingyu. Design and Application of a Mechanical Double-Positioning Block Casing Collar Locator[J]. Petroleum Drilling Techniques, 2018, 46(6): 100-104. DOI: 10.11911/syztjs.2018136 |
[6] | NI Weining, ZHANG Xiaobin, WAN Yong, SUN Weifeng, DAI Yongshou, ZHANG Wei. The Design of the Coil System in LWD Tools Based on Azimuthal Electromagnetic-Wave Resistivity Combined with Sections[J]. Petroleum Drilling Techniques, 2017, 45(2): 115-120. DOI: 10.11911/syztjs.201702019 |
[7] | WEI Qing, LI Zhiping, BAI Ruiting, ZHANG Tiantian, NAN Junxiang. An Experimental Study on the Effect of Microscopic Pore Structure on Spontaneous Imbibition in Tight Sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109-116. DOI: 10.11911/syztjs.201605019 |
[8] | MA Guangjun, WANG Jiachang, ZHANG Haiping. The Design and Experimental Study of PDM Driven Rotary Percussion Drilling Tool[J]. Petroleum Drilling Techniques, 2016, 44(3): 50-54. DOI: 10.11911/syztjs.201603009 |
[9] | Wei Liao, Han Feng, Chen Tao, Guo Zhaohui, Zhu Yujie. Analysis and Experimental Research on Erosion of Cementing Sliding Sleeve[J]. Petroleum Drilling Techniques, 2014, 42(3): 108-111. DOI: 10.3969/j.issn.1001-0890.2014.03.020 |
[10] | Yang Yongyin, Niu Sicheng, Xu Xiqiang. Experimental Study of Combined-Jet PDC Bit[J]. Petroleum Drilling Techniques, 2012, 40(5): 100-105. DOI: 10.3969/j.issn.1001-0890.2012.05.022 |
1. |
王安妮,武加锋,王书君,郝在盛,杜孝灿,李光泽. 井下无线射频识别信号传输特性的模拟研究. 测井技术. 2023(05): 551-557 .
![]() | |
2. |
赵广渊,王天慧,杨树坤,李翔,吕国胜,杜晓霞. 渤海油田液压控制智能分注优化关键技术. 石油钻探技术. 2022(01): 76-81 .
![]() | |
3. |
赵广渊,季公明,苏毅,王春林,郭宏峰,杨树坤. 液控智能注水井下预置水嘴尺寸优化设计研究. 北京石油化工学院学报. 2022(02): 30-34 .
![]() | |
4. |
蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势. 石油钻探技术. 2022(03): 1-9 .
![]() | |
5. |
孙四清,李文博,张俭,陈冬冬,赵继展,郑凯歌,龙威成,王晨阳,贾秉义,杜天林,刘乐,杨欢,戴楠. 煤矿井下长钻孔分段水力压裂技术研究进展及发展趋势. 煤田地质与勘探. 2022(08): 1-15 .
![]() | |
6. |
张小佳,刘文红,申昭熙,钱征华,张应红,周海洋. 基于RFID技术的石油钻具管理系统研制. 石油钻探技术. 2022(06): 107-111 .
![]() | |
7. |
李永康,贾贻勇,张广中,王宏万,崔玉海. 胜利油田注水井分层酸化管柱研究现状及发展建议. 石油钻探技术. 2021(03): 129-134 .
![]() | |
8. |
黎伟,邓琅,邹星,夏杨,陈曦. 永磁力矩电机在油气钻采井下工具中的应用及发展趋势. 煤田地质与勘探. 2021(03): 249-255 .
![]() |