页岩气储层自吸–水化损伤–离子扩散相关性试验研究

丁乙, 雷炜, 刘向君, 秦章晋, 梁利喜, 周吉羚, 熊健

丁乙,雷炜,刘向君,等. 页岩气储层自吸–水化损伤–离子扩散相关性试验研究[J]. 石油钻探技术,2023, 51(5):88-95. DOI: 10.11911/syztjs.2023088
引用本文: 丁乙,雷炜,刘向君,等. 页岩气储层自吸–水化损伤–离子扩散相关性试验研究[J]. 石油钻探技术,2023, 51(5):88-95. DOI: 10.11911/syztjs.2023088
DING Yi, LEI Wei, LIU Xiangjun, et al. Experimental research on the correlation of spontaneous imbibition–hydration damage–ion diffusion in shale gas reservoirs [J]. Petroleum Drilling Techniques,2023, 51(5):88-95. DOI: 10.11911/syztjs.2023088
Citation: DING Yi, LEI Wei, LIU Xiangjun, et al. Experimental research on the correlation of spontaneous imbibition–hydration damage–ion diffusion in shale gas reservoirs [J]. Petroleum Drilling Techniques,2023, 51(5):88-95. DOI: 10.11911/syztjs.2023088

页岩气储层自吸–水化损伤–离子扩散相关性试验研究

基金项目: 国家自然科学基金青年项目“高温高应力深层页岩渗吸–水化耦合机制”(编号:42202194)、中国石油–西南石油大学创新联合体科技合作项目“降低长水平段井下复杂与事故的配套技术”(编号:2020CX040201)资助
详细信息
    作者简介:

    丁乙(1990—),男,四川南充人,2013年毕业于西南石油大学石油工程专业,2016年获西南石油大学石油与天然气工程专业硕士学位,2020年获西南石油大学油气井工程专业博士学位,讲师,主要从事岩石力学与井壁稳定方面的研究工作。E-mail:dingswpu@foxmail.com。

    通讯作者:

    刘向君,liuxiangjunswpi@163.com

  • 中图分类号: TE348

Experimental Research on the Correlation of Spontaneous Imbibition–Hydration Damage–Ion Diffusion in Shale Gas Reservoirs

  • 摘要:

    压裂液与页岩气储层接触后,诱发自吸、水化损伤及离子扩散等水岩反应,导致压裂液返排率低、矿化度高,对压裂改造效果与页岩气产出均有显著影响。目前对上述水岩反应已经开展了针对性研究,但自吸、水化损伤及离子扩散同步产生,对三者之间相关性的研究较缺乏,难以准确认识压裂液与页岩的相互作用,不利于压裂优化设计。为此,立足于室内试验手段,明确了不同条件下的页岩自吸、水化损伤及离子扩散规律及影响因素,系统分析了页岩自吸、水化损伤及离子扩散之间的定量相关性以及相互作用机制。研究结果显示:自吸、水化损伤及离子扩散具有同步响应特征,均在自吸前期发展显著,后续逐渐趋于稳定;自吸与水化损伤相互促进,使页岩吸水量增大;随页岩吸水量增大,离子扩散程度加剧,更多盐离子扩散进入压裂液,使压裂液活度降低,减弱页岩自吸与水化程度。研究成果深化了对压裂液与页岩相互作用的认识,为实现页岩气储层高效水力压裂改造提供了理论支撑。

    Abstract:

    The interaction between shale gas reservoirs and fracturing fluid triggers water–rock reactions, such as spontaneous imbibition, hydration damage, and ion diffusion, restulting in low flowback rate and high salinity, which have a huge impact on fracturing results and shale gas production. Currently, research on these water–rock reactions has been conducted. However, spontaneous imbibition, hydration damage, and ion diffusion simultaneously occur, and the research on relations among these water–rock reactions is not enough. As a result, it is not beneficial for a deep understanding of the interaction between fracturing fluid and shale and the optimization design of fracturing. Therefore, based on laboratory experiments, the law and influence factors of shale spontaneous imbibition, hydration damage, and ion diffusion with various conditions were determined. Investigations of quantitative correlation and interaction mechanisms among shale spontaneous imbibition, hydration damage, and ion diffusion were completed. Results indicated that these reactions had synchronous response features and were all strong in earlier stages and gradually became stable. Spontaneous imbibition and hydration damage exhibited mutual promotion, increasing shale imbibition amount. With the increment in imbibition amount, ion diffusion grew, pushing more saline ions into fracturing fluid and reducing the activity of fracturing fluid. Consequently, shale spontaneous imbibition and hydration degree were restricted. The outcomes deepen the understanding of the interaction between fracturing fluid and shale, providing theoretical support for efficient hydraulic fracturing in shale gas reservoirs.

  • 图  1   页岩自吸与电导率同步测试装置示意

    Figure  1.   Synchro test of shale spontaneous imbibition and conductivity

    图  2   页岩不同条件下的自吸曲线

    Figure  2.   Curves of shale spontaneous imbibition with different conditions

    图  3   页岩水化结构损伤演化特征[28-29]

    Figure  3.   Characteristics of structural damage evolution of shale hydration[28-29]

    图  4   外部流体不同条件下的电导率及其变化率

    Figure  4.   Conductivity and its change rate of external solution under different conditions

    图  5   自吸过程中的吸水率与水化损伤系数

    Figure  5.   Imbibition amount and hydration damage coefficient during spontaneous imbibition

    图  6   自吸过程中的离子扩散

    Figure  6.   Ion diffusion during spontaneous imbibition

    图  7   自吸吸水率与电导率的相关性

    Figure  7.   Correlation between spontaneous imbibition degree and conductivity

    图  8   自吸过程中外部流体的离子来源

    Figure  8.   Source of ions of external fluid during spontaneous imbibition

    图  9   离子扩散程度与水化损伤系数的相关性分析

    Figure  9.   Correlation analyse between ion diffusion degree and hydration damage coefficient

  • [1] 张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. doi: 10.11911/syztjs.2022097

    ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling shale gas field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21. doi: 10.11911/syztjs.2022097

    [2] 刘鸿渊,蒲萧亦,张烈辉,等. 中国页岩气效益开发:理论逻辑、实践逻辑与展望[J]. 天然气工业,2023,43(4):177–183.

    LIU Hongyuan, PU Xiaoyi, ZHANG Liehui, et al. Beneficial development of shale gas in China: theoretical logic, practical logic and prospect[J]. Natural Gas Industry, 2023, 43(4): 177–183.

    [3] 任千秋,林然,赵金洲,等. 基于初次压裂地质工程条件及改造效果的页岩气井重复压裂选井模型[J]. 石油钻采工艺,2023,45(2):223–228.

    REN Qianqiu, LIN Ran, ZHAO Jinzhou, et al. Candidate well selection model of shale gas wells for refracturing based on geological and engineering conditions and stimulation performance of primary fracturing[J]. Oil Drilling & Production Technology, 2023, 45(2): 223–228.

    [4] 袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87.

    YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells [J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87.

    [5] 李鹏飞. 四川盆地页岩气立体开发缝控压裂技术应用[J]. 特种油气藏,2023,30(2):168–174.

    Li Pengfei. Application of fracture-controlled fracturing technology in tridimensional development of shale gas in Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 168–174.

    [6] 刘建亮,王亚莉,陆家亮,等. 中国页岩气开发效益现状及发展策略探讨[J]. 断块油气田,2020,27(6):684–688.

    LIU Jianliang,WANG Yali,LU Jialiang,et al. Discussion on internal rate of return status and development strategy of China shale gas[J]. Fault-Block Oil & Gas Field,, 2020, 27(6): 684–688.

    [7] 游利军,程秋洋,康毅力,等. 页岩裂缝网络水相自吸试验[J]. 中国石油大学学报(自然科学版),2018,42(1):82–89.

    YOU Lijun, CHENG Qiuyang, KANG Yili, et al. Experimental study on spontaneous water imbibition in fracture networks of shale rocks[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(1): 82–89.

    [8] 杨柳,冷润熙,常天全,等. 页岩气储层渗吸与盐离子扩散相关关系[J]. 中国海上油气,2020,32(2):112–119.

    YANG Liu, LENG Runxi, CHANG Tianquan, et al. Correlation between the imbibition and salt ion diffusion of shale gas reservoirs[J]. China Offshore Oil and Gas, 2020, 32(2): 112–119.

    [9]

    DEHGHANPOUR H, LAN Q, SAEED Y, et al. Spontaneous imbibition of brine and oil in gas shales: Effect of water adsorption and resulting microfractures[J]. Energy & Fuels, 2013, 27(6): 3039–3049.

    [10] 张涛,李相方,杨立峰,等. 关井时机对页岩气井返排率和产能的影响[J]. 天然气工业,2017,37(8):48–60. doi: 10.3787/j.issn.1000-0976.2017.08.006

    ZHANG Tao, LI Xiangfang, YANG Lifeng, et al. Effects of shut-in timing on flowback rate and productivity of shale gas wells[J]. Natural Gas Industry, 2017, 37(8): 48–60. doi: 10.3787/j.issn.1000-0976.2017.08.006

    [11] 蒋廷学,卞晓冰,王海涛,等. 页岩气水平井分段压裂排采规律研究[J]. 石油钻探技术,2013,41(5):21–25. doi: 10.3969/j.issn.1001-0890.2013.05.004

    JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Flow back mechanism study of multi-stage fracturing of shale gas horizontal wells[J]. Petroleum Drilling Techniques, 2013, 41(5): 21–25. doi: 10.3969/j.issn.1001-0890.2013.05.004

    [12]

    EVELINE V F, AKKUTLU I Y, MORIDIS G J. Impact of hydraulic fracturing fluid damage on shale gas well production performance[R]. SPE 181677, 2016.

    [13]

    DING Yi, LIU Xiangjun, LIANG Lixi, et al. Experimental and model analysis on shale spontaneous imbibition and its influence factors[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104462. doi: 10.1016/j.jngse.2022.104462

    [14] 康毅力,杨斌,李相臣,等. 页岩水化微观作用力定量表征及工程应用[J]. 石油勘探与开发,2017,44(2):301–308. doi: 10.11698/PED.2017.02.17

    KANG Yili, YANG Bin, LI Xiangchen, et al. Quantitative characterization of micro forces in shale hydration and field applications[J]. Petroleum Exploration and Development, 2017, 44(2): 301–308. doi: 10.11698/PED.2017.02.17

    [15] 曾凡辉,张蔷,郭建春,等. 页岩水化及水锁解除机制[J]. 石油勘探与开发,2021,48(3):646–653. doi: 10.11698/PED.2021.03.20

    ZENG Fanhui, ZHANG Qiang, GUO Jianchun, et al. Mechanisms of shale hydration and water block removal[J]. Petroleum Exploration and Development, 2021, 48(3): 646–653. doi: 10.11698/PED.2021.03.20

    [16]

    OSSELIN F, NIGHTINGALE M, HEARN G, et al. Quantifying the extent of flowback of hydraulic fracturing fluids using chemical and isotopic tracer approaches[J]. Applied Geochemistry, 2018, 93: 20–29. doi: 10.1016/j.apgeochem.2018.03.008

    [17] 王良,胡仁德,杨建,等. 长宁区块页岩压后压裂液离子含量变化研究及应用[J]. 钻采工艺,2019,42(5):99–102. doi: 10.3969/J.ISSN.1006-768X.2019.05.29

    WANG Liang, HU Rende, YANG Jian, et al. Research on ion content change in fracturing fluid after fracturing at Changning Block[J]. Drilling & Production Technology, 2019, 42(5): 99–102. doi: 10.3969/J.ISSN.1006-768X.2019.05.29

    [18]

    BLAUCH M E, MYERS R R, MOORE T R, et al. Marcellus shale post-frac flowback waters-where is all the salt coming from and what are the implications?[R]. SPE 125740, 2009.

    [19]

    HALUSZCZAK L O, ROSE A W, KUMP L R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA[J]. Applied Geochemistry, 2013, 28: 55–61. doi: 10.1016/j.apgeochem.2012.10.002

    [20] 刘敦卿. 压裂液微观渗吸与 “闷井” 增产机理研究[D]. 北京: 中国石油大学(北京), 2017.

    LIU Dunqing. Research on microcosmic laws of fracture fluid imbibition and mechanism of productivity enhancement by “shut-in” in unconventional hydrocarbon reservoir[D]. Beijing: China University of Petroleum(Beijing), 2017.

    [21] 王飞,潘子晴. 化学势差驱动下的页岩储集层压裂液返排数值模拟[J]. 石油勘探与开发,2016,43(6):971–977.

    WANG Fei, PAN Ziqing. Numerical simulation of chemical potential dominated fracturing fluid flowback in hydraulically fractured shale gas reservoirs[J]. Petroleum Exploration and Development, 2016, 43(6): 971–977.

    [22] 游利军,谢本彬,杨建,等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业,2018,38(12):61–69. doi: 10.3787/j.issn.1000-0976.2018.12.007

    YOU Lijun, XIE Benbin, YANG Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61–69. doi: 10.3787/j.issn.1000-0976.2018.12.007

    [23]

    DING Yi, YU Xiaolong, LIU Xiangjun, et al. Novel analytical model of shale spontaneous imbibition considering the hydration effect[J]. Energy & Fuels, 2021, 35(22): 18518–18532.

    [24] 康圆,孙金声,吕开河,等. 一种页岩气疏水强封堵水基钻井液[J]. 钻井液与完井液,2021,38(4):442–448.

    KANG Yuan, SUN Jinsheng, LYU Kaihe, et al. Research on a water-based drilling fluid for shale gas drainage and strong blocking[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 442–448.

    [25] 李皋,李泽,蒋祖军,等. 页岩–液体作用对套管变形的影响研究[J]. 西南石油大学学报(自然科学版),2021,43(1):103–110.

    LI Gao, LI Ze, JIANG Zujun, et al. A study on the Efect of shale-liquid reaction on casing deformation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 103–110.

    [26] 邓媛,何世明,邓祥华,等. 力化耦合作用下的层理性页岩气水平井井壁失稳研究[J]. 石油钻探技术,2020,48(1):26–33.

    DENG Yuan, HE Shiming, DENG Xianghua, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26–33.

    [27] 张闯,任松,吴斐,等. 循环荷载下含层理页岩渗透特性试验研究[J]. 岩土力学,2022,43(3):649–658.

    ZHANG Chuang, REN Song, WU Fei, et al. Experimental study on the permeability characteristics of laminated shale under cyclic loading[J]. Rock and Soil Mechanics, 2022, 43(3): 649–658.

    [28] 丁乙. 富有机质页岩自吸动态表征及损伤效应[D]. 成都: 西南石油大学, 2020.

    DING Yi. Dynamic representation of spontaneous imbibition and its damage effect for rick organic shale[D]. Chengdu: Southwest Petroleum University, 2020.

    [29] 庄严. 页岩水化诱导裂缝产生的微观机制[D]. 成都: 西南石油大学, 2022.

    ZHUANG Yan. Micro mechanism of fracture induced by shale hydration[D]. Chengdu: Southwest Petroleum University, 2022.

    [30]

    LIU Xiangjun, DING Yi, RANJITH P G, et al. Hydration index and hydrated constitutive model of clay shale using acoustic frequency spectrum[J]. Energy Science & Engineering, 2019, 7(5): 1748–1766.

图(9)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  50
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-22
  • 修回日期:  2023-08-19
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回