页岩油藏裂缝网络多相渗流数值模拟研究

咸玉席, 陈超峰, 封猛, 郝有志

咸玉席, 陈超峰, 封猛, 郝有志. 页岩油藏裂缝网络多相渗流数值模拟研究[J]. 石油钻探技术, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
引用本文: 咸玉席, 陈超峰, 封猛, 郝有志. 页岩油藏裂缝网络多相渗流数值模拟研究[J]. 石油钻探技术, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
Citation: XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090

页岩油藏裂缝网络多相渗流数值模拟研究

基金项目: 中国石油重点攻关项目“陆相中高成熟度页岩油勘探开发关键技术研究与应用”(编号:2019E-26)和国家科技重大专项“致密油气藏多尺度介质复杂结构井数值试井分析方法及应用研究”(编号:2017ZX05009005-002)联合资助
详细信息
    作者简介:

    咸玉席(1981—),男,山东日照人,2006年毕业于大庆石油学院工程力学专业,2009年获合肥工业大学工程力学专业硕士学位,2014年获中国科学技术大学工程力学专业博士学位,副研究员,主要从事渗流力学和冲击力学方面的研究。E-mail:yxxian@ustc.edu.cn。

  • 中图分类号: TE319+.1

Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir

  • 摘要: 为了准确表征页岩油藏复杂裂缝中多相流体的流动,建立了嵌入裂缝多相流动模型和多裂缝交叉网络多相流动模型,采用数值模拟方法,研究了多相流体在多裂缝交叉网络中的流动规律。研究结果表明,裂缝网络多相渗流数值模拟方法解决了表征流体单一、裂缝尺度范围大、划分网格要求精度高、流体参数在裂缝界面处不连续等问题,能够判断水力压裂裂缝与天然裂缝沟通的规模及距离,数值模拟计算的地层压力可以表征页岩油藏裂缝网络附近区域内压力随生产时间的变化规律。裂缝网络多相渗流数值模拟,实现了数值模拟的高效计算,为评价页岩油藏储层提供了新的技术方法。
    Abstract: Models for multiphase flow in embedded fractures and multi-fracture-intersecting networks were built to accurately characterize the flow of multiphase fluid in complex fractures in shale oil reservoirs. The numerical simulation method was utilized to analyze the flow law of multiphase fluids in the multi-fracture-intersecting networks. The results show that the numerical simulation method for the multiphase flow in the fracture networks solves problems such as single fluid type characterization, large fracture scales, high requirements for meshing accuracy, and discontinuity of fluid parameters at the fracture interface. This method can be used to assess the communication scale of hydraulic and natural fracturesand the distance between them. The formation pressure calculated by the numerical simulation method can be used to characterize the pressure variation near the fracture networks of shale oil reservoirs with the production time. The numerical simulation method proposed in this paper shows high efficiency in computing, and provides a new technical approach for the evaluation of shale oil reservoirs.
  • 图  1   油藏中垂直于裂缝方向上的油相饱和度分布曲线

    Figure  1.   Saturation distribution curve of oil phase perpendicular to the fracture direction in oil reservoirs

    图  2   裂缝网格两侧的参考点

    Figure  2.   Reference points on both sides of fracture meshes

    图  3   内边界替代覆盖裂缝的基质网格

    Figure  3.   Replacement of matrix meshes covering fractures by the inner boundary

    图  4   交叉于一点的3条裂缝

    Figure  4.   Three fractures intersecting at one point

    图  5   页岩油藏相对渗透率曲线

    Figure  5.   Relative permeability curve of the shale oil reservoir

    图  6   多级压裂水平井裂缝示意

    Figure  6.   Fractures of a multistage fractured horizontal well

    图  7   含有不同类型裂缝的多级压裂水平井离散网格

    Figure  7.   Discrete meshes of a multistage fractured horizontal well with different types of fractures

    图  8   不含有天然裂缝的多级水力压裂地层压力分布

    Figure  8.   Formation pressure distribution of a multistage hydraulically fractured horizontal well without natural fractures

    图  9   不含有天然裂缝的多级水力压裂水平井在初始压力40 MPa下压裂改造后的压力波及区域

    Figure  9.   Pressure swept zone of a multistage hydraulically fractured horizontal well without natural fractures with an initial pressure of 40 MPa

    图  10   不含有天然裂缝的多级水力压裂水平井在闷井10 d后的地层压力分布

    Figure  10.   Formation pressure distribution of a multistage hydraulically fractured horizontal well without natural fractures after 10 d of shut-in

    图  11   不含有天然裂缝的多级水力压裂水平井井底压力相对对数曲线

    Figure  11.   Relative logarithmic curves of the bottomhole pressure of a multistage hydraulically fractured horizontal well without natural fractures

    图  12   含有天然裂缝的多级水力压裂水平井井底压力相对对数曲线

    Figure  12.   Relative logarithmic curves of the bottomhole pressure of a multistage hydraulically fractured horizontal well with natural fractures

  • [1] 杨智,侯连华,陶士振,等. 致密油与页岩油形成条件与“甜点区”评价[J]. 石油勘探与开发,2015,42(5):555–565.

    YANG Zhi, HOU Lianhua, TAO Shizhen, et al. Formation conditions and “sweet spot” evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5): 555–565.

    [2] 王小军,杨智峰,郭旭光,等. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望[J]. 新疆石油地质,2019,40(4):402–413.

    WANG Xiaojun, YANG Zhifeng, GUO Xuguang, et al. Practices and prospects of shale oil exploration in Jimsar Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 402–413.

    [3] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14–26.

    ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14–26.

    [4] 卢双舫,薛海涛,王民,等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报,2016,37(10):1309–1322. doi: 10.7623/syxb201610012

    LU Shuangfang, XUE Haitao, WANG Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309–1322. doi: 10.7623/syxb201610012

    [5]

    ZHANG K, WANG M, LIU Q, et al. Effects of adsorption and confinement on shale gas production behavior[R]. SPE 176296, 2015.

    [6] 董明哲,李亚军,桑茜,等. 页岩油流动的储层条件和机理[J]. 石油与天然气地质,2019,40(3):636–644. doi: 10.11743/ogg20190318

    DONG Mingzhe, LI Yajun, SANG Qian, et al. Reservoir conditions and mechanism of shale oil flow[J]. Oil & Gas Geology, 2019, 40(3): 636–644. doi: 10.11743/ogg20190318

    [7]

    ZERZAR A, BETTAM Y. Interpretation of multiple hydraulically fractured horizontal wells in closed systems[C]//Canadian International Petroleum Conference, Calgary: PETSOC, 2004: PETSOC-2004-027.

    [8] 李宪文,刘顺,陈强,等. 考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价[J]. 石油钻探技术,2019,47(6):73–82. doi: 10.11911/syztjs.2019126

    LI Xianwen, LIU Shun, CHEN Qiang, et al. An evaluation of the stimulation effect of horizontal well volumetric fracturing in tight reservoirs with complex fracture networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73–82. doi: 10.11911/syztjs.2019126

    [9] 李玉梅,吕炜,宋杰,等. 层理性页岩气储层复杂网络裂缝数值模拟研究[J]. 石油钻探技术,2016,44(4):108–113.

    LI Yumei, LYU Wei, SONG Jie, et al. Numerical simulation study on the complex network fractures of stratified shale gas reser-voirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108–113.

    [10] 任允鹏. 致密油藏长缝压裂直井基质-裂缝耦合流动模型[J]. 石油钻采工艺,2020,42(3):334–339.

    REN Yunpeng. Matrix-fracture coupling flow model of long-crack fracturing vertical well in tight oil reservoirs[J]. Oil Drilling & Production Technology, 2020, 42(3): 334–339.

    [11] 雷浩,何建华,胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏,2019,26(3):94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017

    LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017

    [12] 张福蕾,姜瑞忠,崔永正,等. 考虑物性时变的裂缝性油藏数值模拟方法[J]. 特种油气藏,2019,26(4):103–108. doi: 10.3969/j.issn.1006-6535.2019.04.018

    ZHANG Fulei, JIANG Ruizhong, CUI Yongzheng, et al. Numerical simulation method of fractured oil reservoir with time-varying physical properties[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 103–108. doi: 10.3969/j.issn.1006-6535.2019.04.018

    [13] 黎水泉,徐秉业. 双重介质裂缝型油气藏油水两相流动与固体变形藕合数学模型[J]. 天然气工业,1999,19(4):43–45. doi: 10.3321/j.issn:1000-0976.1999.04.012

    LI Shuiquan, XU Bingye. Mathematical model of oil-water two-phase flow and solid-deformation coupling for fractured[J]. Natural Gas Industry, 1999, 19(4): 43–45. doi: 10.3321/j.issn:1000-0976.1999.04.012

    [14]

    MOINFAR A, VARAVEI A, SEPEHRNOORI K, et al. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs[J]. SPE Journal, 2014, 19(2): 289–303. doi: 10.2118/154246-PA

    [15]

    DE ARAUJO CAVALCANTE FILHO J S, SHAKIBA M, MOINFAR A, et al. Implementation of a preprocessor for embedded discrete fracture modeling in an IMPEC compositional reservoir simulator[R]. SPE 173289, 2015.

    [16]

    LEE S H, LOUGH M F, JENSEN C L. Hierarchical modeling of flow in naturally fractured formations with multiple length scales[J]. Water Resources Research, 2001, 37(3): 443–455. doi: 10.1029/2000WR900340

图(12)
计量
  • 文章访问数:  844
  • HTML全文浏览量:  382
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-07-09
  • 网络出版日期:  2021-07-15
  • 刊出日期:  2021-10-17

目录

    /

    返回文章
    返回