Gas-Water Composite Flooding Technology for Fractured and Vuggy Carbonate Reservoirs in Tahe Oilfield
-
摘要:
塔河油田碳酸盐岩缝洞型油藏经水驱在高部位形成了大量的“阁楼油”,而用氮气驱替“阁楼油”时,由于横向驱动作用弱,在井间富集了大量剩余油。为此,根据塔河油田碳酸盐岩缝洞型油藏储层特征及剩余油分布特征,进行了气水复合驱技术研究。在利用物理模拟试验分析气水复合驱油机理的基础上,根据剩余油分布特征,构建了气水复合驱开发模式;根据井间连通通道的特征,设计了开发井网;利用历史水驱数据和累计注气量,设计了气水复合驱参数。塔河油田4区7个注采井组应用了气水复合驱技术,井组产油量平均增加80.0 t。这表明,气水复合驱中的气驱首先将“阁楼油”驱替到水驱通道,水驱提供横向驱动力再将其驱出,从而提高了剩余油的动用程度。
Abstract:After water flooding, a large amount of “attic oil” will be left in the structural top of fractured and vuggy carbonate reservoirs in the Tahe Oilfield. Due to weak lateral drives, a large amount of remaining oil will be accumulated between wells even with nitrogen flooding. According to the reservoir characteristics and remaining oil distribution features of such reservoirs, a gas-water composite flooding technology was studied. Based on the analysis of gas-water composite flooding mechanisms, different gas-water composite flooding development modes have been established according to the distribution features of remaining oil. Based on the characteristics of inter-well communication pathways, the development well pattern was designed taking into consideration the unique conditions, and gas-water composite flooding parameters were designed from historical water flooding data and the cumulative gas injection volume. The gas-water composite flooding technology was applied in 7 injection-production well group of Block 4 of the Tahe Oilfield, and the oil production of this well group was increased by 80.0 tons on average. The results indicate that gas flooding in the gas-water composite flooding drives the “attic oil” to the water flooding channel first, and then the water flooding provides lateral driving force to transport it out.
-
-
-
[1] 张平,贾晓斌,白彬珍,等. 塔河油田钻井完井技术进步与展望[J]. 石油钻探技术, 2019, 47(2): 1–8. ZHANG Ping, JIA Xiaobin, BAI Binzhen, et al. Progress and outlook on drilling and completion technologies in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 1–8.
[2] 吕铁. 缝洞型油藏注氮气吞吐参数优化研究[J]. 特种油气藏, 2018, 25(5): 119–124. LYU Tie. Nitrogen huff-puff parameter optimization in fracture-cavity reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(5): 119–124.
[3] 荣元帅,李新华,刘学利,等. 塔河油田碳酸盐岩缝洞型油藏多井缝洞单元注水开发模式[J]. 油气地质与采收率, 2013, 20(2): 58–61, 115. doi: 10.3969/j.issn.1009-9603.2013.02.015 RONG Yuanshuai, LI Xinhua, LIU Xueli, et al. Tahe Oilfield carbonate seathole reservoir multi-well seathole unit water injection development model[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(2): 58–61, 115. doi: 10.3969/j.issn.1009-9603.2013.02.015
[4] 荣元帅,黄咏梅,刘学利,等. 塔河油田缝洞型油藏单井注水替油技术研究[J]. 石油钻探技术, 2008, 36(4): 57–60. RONG Yuanshuai, HUANG Yingmei, LIU Xueli, et al. Single well water injection production in Tahe fracture-vuggy reservoir[J]. Petroleum Drilling Techniques, 2008, 36(4): 57–60.
[5] 王建海,李娣,曾文广,等. 塔河缝洞型油藏注氮气工艺参数优化研究[J]. 断块油气田, 2015, 22(4): 538–541. WANG Jianhai, LI Di, ZENG Wenguang, et al. Parameter optimization of N2 injection technology in fractured-vuggy reservoirs of Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2015, 22(4): 538–541.
[6] 李满亮,周洪涛,张莹. 塔河油田井组注氮气提高采收率技术[J]. 石油钻采工艺, 2016, 38(3): 392–394. LI Manliang, ZHOU Hongtao, ZHANG Ying. Enhancing oil recovery by nitrogen injection in well group of Tahe Oilfield[J]. Oil Drilling & Production Technology, 2016, 38(3): 392–394.
[7] 刘中云,赵海洋,王建海,等. 塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及[J]. 石油钻探技术, 2019, 47(4): 75–82. LIU Zhongyun, ZHAO Haiyang, WANG Jianhai, et al. Study on vertical differential velocity and transverse scope of nitrogen injection in carbonate reservoirs with fractures and vugs in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(4): 75–82.
[8] 郭秀东,赵海洋,胡国亮,等. 缝洞型油藏超深井注氮气提高采收率技术[J]. 石油钻采工艺, 2013, 35(6): 98–101. GUO Xiudong, ZHAO Haiyang, HU Guoliang, et al. seathole type reservoir Nitrogen injection to increase recovery rate technology[J]. Oil Drilling & Production Technology, 2013, 35(6): 98–101.
[9] 窦之林. 碳酸盐岩缝洞型油藏描述与储量计算[J]. 石油实验地质, 2014, 36(1): 9–15. doi: 10.11781/sysydz201401009 DOU Zhilin. Description and reserve calculation of carbonate rock sewn reservoir[J]. Petroleum Geology and Experiment, 2014, 36(1): 9–15. doi: 10.11781/sysydz201401009
[10] 康志江,李江龙,张冬丽,等. 塔河缝洞型碳酸盐岩油藏渗流特征[J]. 石油与天然气地质, 2005, 26(5): 634–640. doi: 10.3321/j.issn:0253-9985.2005.05.013 KANG Zhijiang, LI Jianglong, ZHANG Dongli, et al. al, Tahe see-hole type carbonate oil reservoir seepage characteristics[J]. Oil and Gas Geology, 2005, 26(5): 634–640. doi: 10.3321/j.issn:0253-9985.2005.05.013
[11] 周林波,刘红磊,解皓楠,等. 超深碳酸盐岩水平井水力喷射定点深度酸化压裂技术[J]. 特种油气藏, 2019, 26(3): 158–162. ZHOU Linbo, LIU Honglei, XIE Haonan, et al. Fixed-point acid fracturing technology in the ultra-deep carbonate horizontal well[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 158–162.
-
期刊类型引用(9)
1. 郭东东,黄芳飞,宁伏龙,卢秋平,刘志超,余义兵. 大洋科学钻探与海洋水合物钻井液体系研究进展. 海洋石油. 2023(03): 64-69 . 百度学术
2. 潘一,廖松泽,杨双春,NIGMATULLIN Dinar,马迪,丛禾. 耐高温聚胺类页岩抑制剂的研究现状. 化工进展. 2020(02): 686-695 . 百度学术
3. 邹志飞,周风山,付帆,李晓东,李艳宁. 基于Web of Science数据库的钻井液文献计量分析. 探矿工程(岩土钻掘工程). 2020(12): 1-7 . 百度学术
4. 蒋巍. 海上硅酸钠聚合醇钻井液的研制. 石油化工高等学校学报. 2019(04): 52-57 . 百度学术
5. 唐咸弟,李中,郭永宾,刘和兴,孟文波,程朋,崔应中,舒福昌. 陵水17-2气田深水钻井液性能控制指标体系研究. 化学与生物工程. 2019(12): 44-47 . 百度学术
6. 许定江,练章华,张强,林铁军. 深水钻完井工程设计要点分析. 断块油气田. 2017(01): 131-136 . 百度学术
7. 罗春芝,何晨晨,杨云锋. 聚有机硅胺强抑制剂LGA-1的室内研究. 断块油气田. 2017(02): 273-276 . 百度学术
8. 李家学,张绍俊,李磊,孙东山,张超,王涛. 环保型高性能水基钻井液在山前超深井中的应用. 钻井液与完井液. 2017(05): 20-26 . 百度学术
9. 丁乙,梁利喜,刘向君,许丽. 温度和化学耦合作用对泥页岩地层井壁稳定性的影响. 断块油气田. 2016(05): 663-667 . 百度学术
其他类型引用(7)