Interface Mechanical Model of Mineral Fiber-Resin Coated Sand
-
摘要: 为深入了解纤维复合防砂技术中纤维复合砂体的增强作用机理,对纤维与覆膜砂表面树脂层的界面性质进行了研究。基于纤维增强复合材料的剪滞理论模型,对单纤维-树脂层微元体进行了界面力学分析;根据矿物纤维覆膜砂体的特征,对剪滞理论模型进行了修正,建立了可定量计算纤维覆膜砂体抗压强度的剪滞理论力学模型。研究发现,覆膜砂体具有宏观颗粒多孔特征和树脂反应收缩产生的大量微裂缝和微孔隙,使砂体应力集中,导致其在60和80 ℃温度下的抗压强度分别为2.75和8.88 MPa;矿物纤维与覆膜砂体为点接触,每个接触点的有效粘结长度为0.3 mm左右;覆膜砂体中加入0.2%矿物纤维后,纤维复合砂体的抗压强度比空白砂体提高了0.92 MPa。研究结果表明,最大剪应力与纤维有效粘结长度呈双曲正切函数关系,纤维有效粘结长度等于所用覆膜砂粒的半径,修正模型从界面力学的角度解释了纤维增强覆膜砂的作用机理,并可在较小误差范围内定量计算适当纤维掺量下纤维复合砂体的抗压强度。Abstract: To further understand the enhancement mechanism of the fiber-resin coated sand control technique,the interfacial mechanical properties of fiber and resin coat were analyzed.The shear-lag model of fiber-reinforced composites was used to analyze the interfacial mechanics of single fiber-resin infinitesimal element.Then,this model was modified according to the characteristics of the mineral fiber-resin coated sand,into a shear-lag mechanical model that could quantify the compressive strength of the fiber-resin coated sand.SEM showed that there were a large number of micro-cracks and micro-pores resulting from resin shrinkage and pellet porous structure,which enabled the stress concentration in the sand body and made its compressive strength only 2.75 MPa(60 ℃)and 8.88 MPa(80 ℃).Point contact existed between mineral fiber and resin coated sand,with net bond length approximately 0.3 mm at each point.The compressive strength of the fiber-resin coated sand with 0.2% mineral fibers was 0.92 MPa higher than that of blank sample.The results proved that there was a hyperbolic tangent function relationship between the maximum shear stress and the effective bond length of fiber,and the effective bond length of fiber was equal to the radius of the resin coated sand.The modified model provided a more reasonable explanation of mechanism of the fiber-resin coated sand from the perspective of interface mechanics,and allowed the quantitative calculation of the compressive strength of fiber-resin coated sand with a appropriate fiber content in a small error range.
-
Keywords:
- fiber /
- sand control /
- resin coated sand /
- enhancement mechanism /
- mechanical analysis /
- interface mechanical
-
-
[1] 李鹏, 赵修太, 邱广敏, 等.纤维复合防砂技术的研究及现场应用[J].特种油气藏, 2005, 12(4):87-91. Li Peng, Zhao Xiutai, Qiu Guangmin, et al.Study and field application of fibre complex sand control[J].Special Oil Gas Reservoirs, 2005, 12(4):87-91. [2] 李怀文, 邵力飞, 刘计超, 等.降水防砂复合材料的研究与应用[J].石油钻探技术, 2011, 39(5):79-81. Li Huaiwen, Shao Lifei, Liu Jichao, et al.Research and application of composite material for lowering water cut and sand control[J].Petroleum Drilling Techniques, 2011, 39(5):79-81. [3] 齐宁, 张琪, 周福建, 等.纤维复合防砂技术的机理研究及应用[J].中国石油大学学报:自然科学版, 2007, 31(2):83-87. Qi Ning, Zhang Qi, Zhou Fujian, et al.Mechanism and application of fiber-resin coated sand control technique[J].Journal of China University of Petroleum:Edition of Natural Science, 2007, 31(2):83-87. [4] 金潮苏.绕丝筛管高压充填防砂井失效原因及对策[J].石油钻探技术, 2010, 38(4):118-120. Jin Chaosu.Failure analysis of wire-wrapped screen gravel packing and its countermeasures[J].Petroleum Drilling Techniques, 2010, 38(4):118-120. [5] 赵修太, 陈东明.油井出砂后期多级防砂技术级数研究[J].石油钻探技术, 2011, 39(1):94-100. Zhao Xiutai, Chen Dongming.Multiple sand control technology in late stage of sand production[J].Petroleum Drilling Techniques, 2011, 39(1):94-100. [6] Zhou Fujian, Zong Yiping, Lu Yuzhang, et al.Application and study of fine-silty sand control technique using fiber-complex high-pressure pack in Sebei gas reservoir[R].SPE 97832, 2006.
[7] 周福建, 熊春明, 杨贤友, 等.纤维复合无筛管防细粉砂理论研究[J].石油探勘与开发, 2005, 32(6):72-74. Zhou Fujian, Xiong Chunming, Yang Xianyou, et al.Theory of screenless fiber resin-coated sand complex fine-silty sand control[J].Petroleum Exploration and Development, 2005, 32(6):72-74. [8] 李金发, 齐宁, 周福建, 等.井下高压充填纤维复合防砂体的力学分析[J].中国石油大学学报:自然科学版, 2008, 32(5): 67-72. Li Jinfa, Qi Ning, Zhou Fujian, et al.Mechanics analysis of fiber-complex sand control of downhole high-pressure packing[J].Journal of China University of Petroleum:Edition of Natural Science, 2008, 32(5):67-72. [9] 周德喜, 侯建国, 崔蕾.国内外钢纤维混凝土受力性能研究述评[J].武汉大学学报:工学版, 2008, 41(增刊1):57-60. Zhou Dexi, Hou Jianguo, Cui Lei.Review of researches on force performance of steel fiber reinforced concrete at home and abroad[J].Engineering Journal of Wuhan University, 2008, 41(supplement 1):57-60. [10] 马一平, 谈慕华.聚丙烯单丝与水泥石界面脱粘强度及其影响因素[J].同济大学学报, 2001, 29(4):406-409. Ma Yiping, Tan Muhua.Research on the interfacial dedonding strength of polypropylene filament pull-out from cement paste and its affecting factors[J].Journal of Tongji University, 2001, 29(4):406-409. [11] 张莉, 申士杰.纤维增强树脂基复合材料界面结合机理研究现状[J].纤维复合材料, 2011(4):30-33. Zhang Li, Shen Shijie.The research of fiber reinforced polymer interface[J].Fiber Composites, 2011(4):30-33. [12] Zhao F M, Takeda N.Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites:part Ⅱ:comparison with prediction[J].Composites:Part A:Applied Science and Manufacturing, 2000, 31(11):1215-1224.
[13] 高庆, 康国政.短纤维复合材料应力传递的修正剪滞理论[J].固体力学学报, 2000, 21(3):198-204. Gao Qing, Kang Guozheng.The revised shear-lag theory for stress transfer in short fiber composites[J].Acta Mechanica Solida Sinica, 2000, 21(3):198-204. [14] 张滇军, 徐世烺.短纤维增强混凝土应力传递剪滞理论的改进[J].工程力学, 2005, 22(6):165-169. Zhang Dianjun, Xu Shilang.The improvement on shear-lag theory for stress transfer in short fibre reinforced concrete[J].Engineering mechanics, 2005, 22(6):165-169. [15] SY/T 5276—2000 化学防砂人工岩心抗折强度、抗压强度以及气体渗透率的测定[S]. SY/T 5276—2000 Test method for flexural strength compression strength and air permeability of chemical sand consolidation in man-made core[S]. [16] 刘永胜.纤维混凝土增强机理的界面力学分析[J].混凝土, 2008(4):34-35. Liu Yongsheng.Analysis of interface mechanics of fiber reinforced concrete[J].Concrete, 2008(4):34-35. -
期刊类型引用(1)
1. 张晓军, 刘金, 张超. 基于MCU的覆膜砂冷却过程自动控制系统设计. 铸造技术. 2016(05): 1037-1039 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 2905
- HTML全文浏览量: 73
- PDF下载量: 3604
- 被引次数: 2