薄互层大型压裂组合加砂技术研究与应用

金智荣, 张华丽, 周继东, 王进涛

金智荣, 张华丽, 周继东, 王进涛. 薄互层大型压裂组合加砂技术研究与应用[J]. 石油钻探技术, 2013, 41(6): 86-89. DOI: 10.3969/j.issn.1001-0890.2013.06.017
引用本文: 金智荣, 张华丽, 周继东, 王进涛. 薄互层大型压裂组合加砂技术研究与应用[J]. 石油钻探技术, 2013, 41(6): 86-89. DOI: 10.3969/j.issn.1001-0890.2013.06.017
Jin Zhirong, Zhang Huali, Zhou Jidong, Wang Jintao. Research and Application of Massive Combined Sand Fracturing for Thin Interbedded Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(6): 86-89. DOI: 10.3969/j.issn.1001-0890.2013.06.017
Citation: Jin Zhirong, Zhang Huali, Zhou Jidong, Wang Jintao. Research and Application of Massive Combined Sand Fracturing for Thin Interbedded Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(6): 86-89. DOI: 10.3969/j.issn.1001-0890.2013.06.017

薄互层大型压裂组合加砂技术研究与应用

详细信息
    作者简介:

    金智荣(1982- ),男,江苏扬州人,2005年毕业于西南石油大学石油工程专业,2008年获西南石油大学油气田开发工程专业硕士学位,工程师,主要从事油井压裂增产工艺技术研究。

  • 中图分类号: TE357.1+3

Research and Application of Massive Combined Sand Fracturing for Thin Interbedded Reservoirs

  • 摘要: 为实现薄互层大型压裂造支撑长缝和缝高有效支撑,提高压裂效果,研究应用了组合加砂技术。在分析裂缝宽度和流体密度对支撑剂运移趋势影响的基础上,得出了组合加砂的顺序为支撑剂粒径由小到大、密度由高到低。借助导流能力试验对比不同支撑剂比例组合,提出了组合加砂时增加大粒径、低密度支撑剂的比例来提高裂缝导流能力。该技术在长停井L3井进行了试验,先加入30/50目、密度1.75 kg/L的陶粒20 m3,再加入20/40目、密度1.60 kg/L的陶粒30 m3。压裂后净压力拟合分析表明,支撑缝长196.8 m,支撑缝高42.5 m,基本达到设计预期要求。该井压裂后初期平均产液量5.6 t/d,产油量3.2 t/d。现场施工表明,该技术能够实现造支撑长缝和缝高有效支撑,为类似薄互层大型压裂提供了技术参考。
    Abstract: In order to create long fractures and propped fracture height effectively,and improve the effect of fracturing,a combined sand fracturing technique was developed.Based on the analysis of the effect of fracture width and fluid density on proppant migration trend,we determined sand adding order from small size to large size and from high density to low density.Comparing different proppant ratio combinations in conductivity test,it was found that increase in sand size and proportion of low density proppant can raise fracture conductivity.This technique has been applied in Well L3,in which 20 cubic meters of 30/50 mesh 1.75 kg/L ceramsites was added first,followed by 30 cubic meters of 20/40 mesh 1.60 kg/L ceramsites.Net pressure matching and analysis after fracturing treatment show that hydraulic fracture length reaches 196.8 m and fracture height reaches 42.5 m meeting the design requirements.Well L3 produced 5.6 t/d of fluid and 3.2 t/d of oil after fracturing initially.The field operation shows that this technique can create long propped fractures and fracture height effectively,providing technical reference for fracturing in similar thin interbedded reservoirs.
  • [1] 肖晖, 郭建春, 卢聪, 等.F142区块大型压裂技术研究与应用[J].石油钻探技术, 2012, 40(6):90-95. Xiao Hui, Guo Jianchun, Lu Cong, et al.Research and application of large-scale fracturing in Block F142[J].Petroleum Drilling Techniques, 2012, 40(6):90-95.
    [2] 苏玉亮, 慕立俊, 范文敏, 等.特低渗透油藏油井压裂裂缝参数优化[J].石油钻探技术, 2011, 39(6):69-72. Su Yuliang, Mu Lijun, Fan Wenmin, et al.Optimization of fracturing parameters for ultra-low permeability reservoirs[J].Petroleum Drilling Techniques, 2011, 39(6):69-72.
    [3] 刘红磊, 熊炜, 高应运, 等.方深1井页岩气藏特大型压裂技术[J].石油钻探技术, 2011, 39(3):46-52. Liu Honglei, Xiong Wei, Gao Yingyun, et al.Large scale fracturing technology of Fangshen 1 shale gas well[J].Petroleum Drilling Techniques, 2011, 39(3):46-52.
    [4] 蒋廷学, 李治平, 才博, 等.松辽盆地南部致密气藏低伤害大型压裂改造技术研究与试验[J].石油钻采工艺, 2009, 31(4):6-11. Jiang Tingxue, Li Zhiping, Cai Bo, et al.Study and field test of low damage massive hydraulic fracturing techniques in tight gas reservoirs in the south of Songliao Basin[J].Oil Drilling Production Technology, 2009, 31(4):6-11.
    [5] 尹建, 郭建春, 曾凡辉.低渗透薄互层压裂技术研究及应用[J].天然气与石油, 2012, 30(6):52-54. Yin Jian, Guo Jianchun, Zeng Fanhui.Research and application of low permeability and thin interbed fracturing technology[J].Natural Gas and Oil, 2012, 30(6):52-54.
    [6] 牟善波, 刘晓宇.高89块低孔、特低渗薄互层大型压裂技术研究与应用[J].断块油气田, 2006, 13(2):74-77. Mou Shanbo, Liu Xiaoyu.Study and application of big-frac treatment technology on the thin oil sandwichs of low porosity and extra-low permeability in Block Gao 89[J].Fault-Block Oil Gas Field, 2006, 13(2):74-77.
    [7]

    Clark P E.Transport of proppant in hydraulic fractures.IADC/SPE 103167, 2006.

    [8] 卢聪, 郭建春, 王建, 等.义104-1侧井砂砾岩储层大型压裂技术研究与应用[J].油气地质与采收率, 2012, 19(4):103-105. Lu Cong, Guo Jianchun, Wang Jian, et al.Study and application of massive hydraulic fracturing technique in Y104-1 Well conglomerate formation[J].Petroleum Geology and Recovery Efficiency, 2012, 19(4):103-105.
    [9] 钟安海.多尺度支撑剂组合加砂技术在压裂过程中的应用研究[J].内蒙古石油化工, 2012, 38(7):91-93. Zhong Anhai.Study on applying the technology of assembling different sizes of proppant using in fracturing[J].Inner Mongolia Petrochemical Industry, 2012, 38(7):91-93.
    [10] 辛军, 郭建春, 赵金洲, 等.砂泥岩交互储层支撑剂导流能力实验及应用[J].西南石油大学学报:自然科学版, 2010, 32(3):81-84. Xin Jun, Guo Jianchun, Zhao Jinzhou, et al.Experimental study on and field appliance of proppant conductivity in alternating formations of sandstone and shale[J].Journal of Southwest Petroleum University:Science Technology Edition, 2010, 32(3):81-84.
    [11] 曾凡辉, 郭建春, 陈敏.大厚段砂砾岩储层压裂工艺技术研究及应用[J].石油天然气学报, 2011, 33(5):123-126. Zeng Fanhui, Guo Jianchun, Chen Min.Fracturing technology research and application of big and thick glutenite reservoirs[J].Journal of Oil and Gas Technology, 2011, 33(5):123-126.
    [12] 杨立君.支撑剂对流模型研究及水平井分级压裂设计软件研制[D].成都:西南石油大学石油工程学院, 2005. Yang Lijun.Research of proppant convection model and develop the software of the classification fracture the horizontal well[D].Chengdu:School of Petroleum Engineering, Southwest Petroleum University, 2005.
    [13] SY/T6302—1997 压裂支撑剂充填层短期导流能力评价推荐方法[S]. SY/T6302—1997 Recommended practice for evaluating short term proppant pack conductivity[S].
    [14] 袁文义, 谢建利, 尹淑丽, 等.段塞导致的混合支撑剂导流能力评价[J].断块油气田, 2009, 16(6):121-122. Yuan Wenyi, Xie Jianli, Yin Shuli, et al.Evaluation on flow conductivity of mixed proppant caused by slug[J].Fault-Block Oil Gas Field, 2009, 16(6):121-122.
    [15] 肖勇军, 郭建春, 王文耀, 等.不同粒径组合支撑剂导流能力实验研究[J].断块油气田, 2009, 16(3):102-104. Xiao Yongjun, Guo Jianchun, Wang Wenyao, et al.Study on flow conductivity of proppant with different size combination[J].Fault-Block Oil Gas Field, 2009, 16(3):102-104.
计量
  • 文章访问数:  2312
  • HTML全文浏览量:  38
  • PDF下载量:  3724
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-14
  • 修回日期:  2013-07-31
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回