水下采油树跨接管接头的传热计算与保温分析

丁矿, 朱宏武, 郝建生, 张建华

丁矿, 朱宏武, 郝建生, 张建华. 水下采油树跨接管接头的传热计算与保温分析[J]. 石油钻探技术, 2012, 40(3): 121-125. DOI: 10.3969/j.issn.1001-0890.2012.03.025
引用本文: 丁矿, 朱宏武, 郝建生, 张建华. 水下采油树跨接管接头的传热计算与保温分析[J]. 石油钻探技术, 2012, 40(3): 121-125. DOI: 10.3969/j.issn.1001-0890.2012.03.025
Ding Kuang, Zhu Hongwu, Hao Jiansheng, Zhang Jianhua. Numerical Study on Heat Transfer and Thermal Insulation of Subsea Christmas Tree Connectors[J]. Petroleum Drilling Techniques, 2012, 40(3): 121-125. DOI: 10.3969/j.issn.1001-0890.2012.03.025
Citation: Ding Kuang, Zhu Hongwu, Hao Jiansheng, Zhang Jianhua. Numerical Study on Heat Transfer and Thermal Insulation of Subsea Christmas Tree Connectors[J]. Petroleum Drilling Techniques, 2012, 40(3): 121-125. DOI: 10.3969/j.issn.1001-0890.2012.03.025

水下采油树跨接管接头的传热计算与保温分析

基金项目: 

国家高技术研究发展计划("863"计划)项目"油气混输泵系统关键技术研究"(编号:2007AA09Z316)资助

详细信息
    作者简介:

    丁矿(1986-),男,河南商丘人,2008年毕业于中国石油大学(北京)机械设计及自动化专业,机械工程专业在读博士研究生,主要从事石油装备研发、流固耦合传热方面的研究.

  • 中图分类号: TE931+.1

Numerical Study on Heat Transfer and Thermal Insulation of Subsea Christmas Tree Connectors

  • 摘要: 水下采油树和跨接管之间需要专用接头进行连接,其中以套筒式接头最为常见。在水下进行接头安装时,持续的热量交换会导致接头在停机条件下持续降温,因此必须预先评估相关的温度分布和热量传递问题,提高水下采油树系统的流动安全水平。根据水下油气开发的要求,结合已有经验,在水下采油树套筒式跨接管接头结构设计的基础上,采用耦合传热的数值模拟方法,对未进行保温的套筒式接头进行了模拟分析,并完成了包含保温腔的套筒式接头的传热计算;最后基于变物性的分析方法,对含有保温腔的套筒式接头进行了内流场分析。计算表明:没有保温措施的套筒式接头会产生局部过冷问题,所设计的保温腔能大幅度改善接头的整体保温效果,满足水下采油树8 h保温的基本要求。用耦合传热数值模拟方法分析水下采油树系统的传热与保温理论可行,结果可靠。
    Abstract: The subsea christmas tree and well jumper are connected by special subsea connectors and collet connector is commonly used.The connector installed underwater will induce continuous heat transferring to ambient cold seawater and cause excessive temperature drop under shutdown condition.Relevant temperature distribution and heat transfer problems must be evaluated so as to further increase the flow security of the subsea christmas tree.Based on the requirment of subsea hydrocarbon development,a coupled fluid-solid numerical method was adopted to analyze the heat transfer and fluid flow of the collet connector without thermal insulation treatment.In addition,this paper completed the numerical study on heat transfer of the collet connector covered by an insulation cavity(doghouse)and the inner flow field simulation of the collet connector based on the consideration of variable properties of fluids.The results show that local supercooled spot would be present in the connector without any insulation measures and the doghouse could greatly improve the effect of thermal preservation on collet connectors which satisfy the basic principle of eight hours’ thermal insulation for subsea christmas trees.The method of coupling heat transfer of subsea collet connector is feasible in theory and reliable in calculation results.
  • [1]

    Ding Kuang,Zhu Hongwu,Zhang Jinya,et al.Taking the pulse of subsea trees design towards deepwater application[J].Advanced Materials Research,2011,201/202/203:1192-1197.

    [2]

    Zabaras George J,Zhang Jianfeng.Steady-state and transient thermal performance of subsea hardware.OTC 8544,1997.

    [3]

    Janoff D,Mckie N,Davalath J.Prediction of cool down times and designing of insulation for subsea production equipment.OTC 16507,2004.

    [4]

    Aarnes K A,Lesgent J,Hübert J C.Thermal design of a Dalia SPS deepwater christmas tree:verified by use of full scale testing and numerical simulations.OTC 17090,2005.

    [5]

    Davalath J,Stevens K.Cool-down thermal performance of subsea systems based on Gulf of Mexico field experience.OTC 17972,2006.

    [6]

    Stein Sorbye,Randi Moe.A system design approach for thermal insulation of subsea equipment using CFD.ESDA 2006-95255,2006.

    [7]

    Carré D,O’Sullivan J.Moho Bilondo:subsea production system experience.OTC 20280,2009.

    [8] 陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2004:347-362. Tao Wenquan.Numerical heat transfer[M].2nd ed.Xi’an:Xi’an Jiaotong University Press,2004:347-362.
    [9]

    Gray D D,Giorgin A.The validity of the Boussinesq approximation for liquids and gases[J].International Journal of Heat Mass Transfer,1976,19(5):545-551.

    [10]

    Patankar S V.Numerical heat transfer and fluid flow[M].New York:McGraw-Hill,1980:51.

    [11] 李迎,俞小莉,陈红岩,等.发动机冷却系统流固耦合稳态传热三维数值仿真[J].内燃机学报,2007,25(3):252-257. Li Ying,Yu Xiaoli,Chen Hongyan,et al.3-D simulation of steady heat transfer of fluid-solid coupled system in engine coolant system[J].Transactions of Csice,2007,25(3):252-257.
    [12]

    Kristin F,Vegard K,Svein H,et al.Subsea heat bank:an alternative thermal insulation method.SPE 77577,2002.

    [13] 刘刚,张国忠,张园园.热含蜡原油管内停输温降计算[J].中国石油大学学报:自然科学版,2010,34(5):136-140. Liu Gang,Zhang Guozhong,Zhang Yuanyuan.Temperature drop calculation in hot waxy crude pipeline during shutdown[J].Journal of China University of Petroleum:Edition of Natural Science,2010,34(5):136-140.
    [14]

    Spiering M.Performance analysis and testing on insulation systems for connectors.OTC 16506,2004.

    [15]

    Antar Mohamed A,Baig Hasan.Conjugate conduction-natural convection heat transfer in a hollow building block[J].Applied Thermal Engineering,2009,29(2/3):334-339.

计量
  • 文章访问数:  3039
  • HTML全文浏览量:  115
  • PDF下载量:  2957
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-18
  • 修回日期:  2012-04-19
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回