刘言理, 聂上振, 齐月魁, 杨延征, 高振强. 套损井多次补贴用可变径膨胀锥设计与性能分析[J]. 石油钻探技术, 2017, 45(5): 78-83. DOI: 10.11911/syztjs.201705014
引用本文: 刘言理, 聂上振, 齐月魁, 杨延征, 高振强. 套损井多次补贴用可变径膨胀锥设计与性能分析[J]. 石油钻探技术, 2017, 45(5): 78-83. DOI: 10.11911/syztjs.201705014
LIU Yanli, NIE Shangzhen, QI Yuekui, YANG Yanzheng, GAO Zhenqiang. Design and Performance of a Variable-Diameter Expandable Cone in a Well with Casing Damage for Multiple Patching[J]. Petroleum Drilling Techniques, 2017, 45(5): 78-83. DOI: 10.11911/syztjs.201705014
Citation: LIU Yanli, NIE Shangzhen, QI Yuekui, YANG Yanzheng, GAO Zhenqiang. Design and Performance of a Variable-Diameter Expandable Cone in a Well with Casing Damage for Multiple Patching[J]. Petroleum Drilling Techniques, 2017, 45(5): 78-83. DOI: 10.11911/syztjs.201705014

套损井多次补贴用可变径膨胀锥设计与性能分析

Design and Performance of a Variable-Diameter Expandable Cone in a Well with Casing Damage for Multiple Patching

  • 摘要: 针对套损井已补贴段下方无法进行多次补贴的问题,设计了一种可变径膨胀锥,以实现膨胀工具小直径入井、大直径膨胀,从而达到对套损井多次补贴的目的。在设计可变径膨胀锥结构的基础上,建立了膨胀锥闭合过程中的力学计算模型和运动计算模型,得到了膨胀力与推力、楔形角、摩擦系数的函数关系及推力与约束力、摩擦系数的函数关系。计算结果表明,可变径膨胀锥的膨胀力是推力的1.53倍,端面摩擦系数由0.1增大至0.4过程中推力增大8.8 kN,由0.5增大至0.8过程中推力增大19.0 kN,膨胀锥最大应力454 MPa。样机室内试验结果表明,该工具结构设计合理,启动压力3~5 MPa,完全闭合压力52 MPa,膨胀锥最大外径由188.0 mm增大至220.0 mm,与常规膨胀锥尺寸相同,膨胀率达17.02%。研究结果表明,可变径膨胀锥的膨胀力随推力增大而线性增大,能够实现膨胀工具小直径入井、大直径膨胀,进一步降低闭合压力后具有广阔的应用前景。

     

    Abstract: Since it is not possible to perform multiple expansion and patching operations in lower parts of the well with casing damage,a variable-diameter expandable cone has been designed to perform multiple patching operations in wells with casing damage. It is accomplished through the delivery of tools in minor diameters and expansion for patching operations in large diameters. In addition to structure design of the variable-diameter expandable cone,mechanical calculation model and dynamic calculation model for closure of the cone have been established to highlight functions among expansion,propulsion,conic angle and friction coefficients,as well as the function among propulsion,constriction and friction coefficients. Calculation results showed that expansion force is 1.53 times of propulsion. With the end friction coefficient increased from 0.1 to 0.4,propulsion increased 8.8 kN,and with the end friction coefficient increased from 0.5 to 0.8,propulsion increased 19.0 kN,the maximum stress on expandable cone was determined to be 454 MPa. Experimental tests of the prototype of the expandable cone demonstrated that the innovative tool has rational structural design with initiation pressures of 3-5 MPa and complete closure pressure of 52 MPa. The maximum OD of the expandable cone may increase from 188.0 mm to 220.0 mm with expansion rate up to 17.02%,which is identical to that of the conventional expandable cone. Research results showed that expansion forces present linear increase with the increases in propulsion. With the capacity for delivery in minor diameter and expansion to larger diameters,the expandable cone can further reduce closure pressure. Generally speaking,this application of the expandable cone has bright prospects.

     

/

返回文章
返回