朱祖扬, 吴海燕, 李永杰, 李丰波. 钻铤结构对随钻声波测井响应的影响[J]. 石油钻探技术, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020
引用本文: 朱祖扬, 吴海燕, 李永杰, 李丰波. 钻铤结构对随钻声波测井响应的影响[J]. 石油钻探技术, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020
ZHU Zuyang, WU Haiyan, LI Yongjie, LI Fengbo. The Effect of Collar Structure on Acoustic Logging Response While Drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020
Citation: ZHU Zuyang, WU Haiyan, LI Yongjie, LI Fengbo. The Effect of Collar Structure on Acoustic Logging Response While Drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020

钻铤结构对随钻声波测井响应的影响

The Effect of Collar Structure on Acoustic Logging Response While Drilling

  • 摘要: 为了有效提取随钻声波测井时的地层声波信息,采用有限差分法和时间慢度相关分析法,研究了钻铤外径、钻铤内径、钻铤内部变径和钻铤外壁刻槽等因素对钻铤波传播的影响。模拟计算结果显示,钻铤外半径变大时,即钻铤外壁和井壁的间隙较小时,接收波形里没有地层横波;钻铤内半径变小时,钻铤波、地层横波和斯通利波幅度变化不大,但是当钻铤壁厚变薄时斯通利波幅度明显增大;钻铤内变径对钻铤波幅度的影响,主要取决于声源频率是否在钻铤固有阻带频率范围内;钻铤外壁刻槽后,钻铤波幅度变小,可以从接收波形里提取出地层纵波。研究结果表明,钻铤的内径和外径变化会对地层横波和斯通利波的接收产生影响,而钻铤的内壁和外壁形状(如刻槽)会对钻铤波的幅度产生影响,钻铤结构与随钻声波测井响应的变化关系可以为随钻声波测井仪隔声体设计和随钻声波测井资料解释提供理论依据。

     

    Abstract: To acquire formation acoustic data effectively during acoustic logging while drilling, the finite difference method and slowness-time coherence method were used jointly to determine impacts of ID, OD, ID variation and external grooves on acoustic wave propagation. Simulation calculation results showed that no formation S-wave could be detected when the OD of the drill collar increased, or when the clearance between external wall of the drill collar and the borewall decreased. When ID of the drill collar decreased, no significant changes could be observed in amplitudes of the collar wave, S-wave and the Stoneley wave, but the amplitudes of the Stoneley wave increased dramatically with the thinning of wall thicknesses of the drill collar. The impact of ID changes of the drill collar on amplitudes may predominantly be determined by whether or not the acoustic source frequency is in collar stopband range. When a groove appeared on the outer wall of drill collars, the wave amplitude from the drill collar became smaller, thus the P-waves could be extracted from the acquired wave shapes. Research results showed that changes in IDs and OD of drill collars could affect the acceptance of S-wave and Stoneley wave. On the other hand, the shape of the internal and external walls of the drill collar (such as notch groove) may affect the wave amplitude of drill collar. The relationship between the structure of the drill collar and the responses of the LWD may provide a reliable foundation for the design of silencers in the LWD tools and for the interpretation of LWD data.

     

/

返回文章
返回