王建军, 陶兴华, 邹勇, 薛龙. 膨胀波纹管焊接工艺及焊缝膨胀性能分析[J]. 石油钻探技术, 2022, 50(3): 61-65. DOI: 10.11911/syztjs.2022008
引用本文: 王建军, 陶兴华, 邹勇, 薛龙. 膨胀波纹管焊接工艺及焊缝膨胀性能分析[J]. 石油钻探技术, 2022, 50(3): 61-65. DOI: 10.11911/syztjs.2022008
WANG Jianjun, TAO Xinghua, ZOU Yong, XUE Long. Analysis of Welding Technology and Weld Expansion Performance on Expandable Profile Liner[J]. Petroleum Drilling Techniques, 2022, 50(3): 61-65. DOI: 10.11911/syztjs.2022008
Citation: WANG Jianjun, TAO Xinghua, ZOU Yong, XUE Long. Analysis of Welding Technology and Weld Expansion Performance on Expandable Profile Liner[J]. Petroleum Drilling Techniques, 2022, 50(3): 61-65. DOI: 10.11911/syztjs.2022008

膨胀波纹管焊接工艺及焊缝膨胀性能分析

Analysis of Welding Technology and Weld Expansion Performance on Expandable Profile Liner

  • 摘要: 膨胀波纹管通过焊接连接在一起,焊缝的膨胀性能直接决定膨胀波纹管整体的膨胀性能。为了解焊缝的膨胀性能,在介绍手工焊和自动焊2类膨胀波纹管焊接工艺的基础上,利用弹塑性力学及有限元法模拟了ϕ149.2 mm 8字形膨胀波纹管焊缝的膨胀过程、分析了焊缝的膨胀性能,并通过膨胀波纹管的试验井试验和现场试验进行了验证。由模拟分析及试验可知:膨胀波纹管膨胀过程中焊缝应力和应变最大点在波谷处的管壁外侧;焊缝和膨胀波纹管本体的应力和应变随内压变化的规律相同,焊缝的应力和应变始终大于膨胀波纹管本体,加压至30 MPa时ϕ149.2 mm 8字形膨胀波纹管及焊缝依然在安全范围内;ϕ149.2 mm 8字形膨胀波纹管采用液压膨胀方式加压至18 MPa即满足机械膨胀要求。研究结果表明,采用现有焊接工艺获得的焊缝满足现场膨胀需求,通过模拟获得的膨胀过程中膨胀波纹管焊缝应力和应变的变化规律与试验结果基本吻合,这对现场应用膨胀波纹管具有一定的指导作用。

     

    Abstract: Because expandable profile liners (EPLs) are connected by welding, their overall expansion performance is a function of weld expansion performance. To understand the weld expansion performance, two kinds of EPL welding technologies, namely, manual welding and automatic welding, were outlined. The weld expansion process of an 8-shaped EPL with a diameter of ϕ149.2 mm was simulated by the finite-element method in light of elastic-plastic mechanics. The weld expansion performance was then analyzed and verified by EPL test well and field tests. The following results were obtained from simulation analyses and tests. The points of maximum weld stress and strain during EPL expansion occurred on the EPL outer wall. It was noted that variation laws of weld stress and strain with internal pressure were similar to those of EPL body stress and strain, although the weld stress and strain were higher than EPL body stress and strain during the whole process. The 8-shaped EPL with a diameter of ϕ149.2 mm and the weld were still in the safe range when the EPL was pressurized to 30 MPa. The mechanical expansion requirements were satisfied when the EPL was pressurized to 18 MPa by hydraulic expansion. The results showed that welds obtained by existing welding technologies could meet the field expansion requirements. The variation laws of weld stress and strain of EPL obtained by simulation were consistent with the test results. This research can guide the field application of EPLs.

     

/

返回文章
返回