呙义, 高晓飞, 易会安, 代玲, 徐立前, 刘佳. 海上油田全寿命控水完井技术研究及现场试验[J]. 石油钻探技术, 2021, 49(6): 93-98. DOI: 10.11911/syztjs.2021120
引用本文: 呙义, 高晓飞, 易会安, 代玲, 徐立前, 刘佳. 海上油田全寿命控水完井技术研究及现场试验[J]. 石油钻探技术, 2021, 49(6): 93-98. DOI: 10.11911/syztjs.2021120
GUO Yi, GAO Xiaofei, YI Huian, DAI Ling, XU Liqian, LIU Jia. Research and Field Test on Life-Long Water Control Completion Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2021, 49(6): 93-98. DOI: 10.11911/syztjs.2021120
Citation: GUO Yi, GAO Xiaofei, YI Huian, DAI Ling, XU Liqian, LIU Jia. Research and Field Test on Life-Long Water Control Completion Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2021, 49(6): 93-98. DOI: 10.11911/syztjs.2021120

海上油田全寿命控水完井技术研究及现场试验

Research and Field Test on Life-Long Water Control Completion Technology in Offshore Oilfields

  • 摘要: 为了解决海上油田砂岩底水油藏水平井开发过程中底水快速锥进的问题,在分析流入控制装置(ICD)和自动流入控制装置(AICD)控水完井技术的优势与不足的基础上,研究了海上油田全寿命控水完井技术。该技术结合ICD和AICD控水完井技术的优势,在油井投产初期通过抑制高渗段来均衡水平井水平段供液剖面,投产中后期通过“自动控制流量”来抑制水平段高含水段出液,实现自动控水,起到延缓油井含水率上升的作用。海上油田全寿命控水完井技术在X油田H油藏W1井进行了现场试验,与同油藏生产井对比发现,该技术对水平井开发过程中的含水率上升有抑制作用,值得扩大规模试验。

     

    Abstract: Aiming at solving the problem of rapid coning of bottom water during the development by horizontal wells in the sandstone bottom water reservoir of offshore oilfields, a life-long water control completion technology in offshore oilfields was studied based on the analysis of the advantages and disadvantages of inflow control device (ICD) and autonomousinflow control device (AICD). The technology combined the advantages of ICD and AICD. During the early production period, the high permeability section was constrained to balance the liquid supply profile in the horizontal section of the horizontal wells. In the later periods, the "autonomous flow rate control" was used to constrain the liquid flow of the horizontal high water content section, which could slow down the increase in water cut by autonomous water control. The technology was tested on-site in Well W1 in Reservoir H of Oilfield X. By comparing with production wells in the same reservoir, it is shown that the life-long water control completion technology can restrain the increase of water cut in the development by horizontal wells and is worthy of expanding the test scale.

     

/

返回文章
返回