杨红歧, 孙连环, 敖竹青, 桑来玉, 杨广国, 高元. 顺北油气田一区超深井三开长封固段固井技术[J]. 石油钻探技术, 2020, 48(6): 33-39. DOI: 10.11911/syztjs.2020110
引用本文: 杨红歧, 孙连环, 敖竹青, 桑来玉, 杨广国, 高元. 顺北油气田一区超深井三开长封固段固井技术[J]. 石油钻探技术, 2020, 48(6): 33-39. DOI: 10.11911/syztjs.2020110
YANG Hongqi, SUN Lianhuan, AO Zhuqing, SANG Laiyu, YANG Guangguo, GAO Yuan. Anti-Leakage Cementing Technology for the Long Well Section below Technical Casing of Ultra-Deep Wells in the No.1 Area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33-39. DOI: 10.11911/syztjs.2020110
Citation: YANG Hongqi, SUN Lianhuan, AO Zhuqing, SANG Laiyu, YANG Guangguo, GAO Yuan. Anti-Leakage Cementing Technology for the Long Well Section below Technical Casing of Ultra-Deep Wells in the No.1 Area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33-39. DOI: 10.11911/syztjs.2020110

顺北油气田一区超深井三开长封固段固井技术

Anti-Leakage Cementing Technology for the Long Well Section below Technical Casing of Ultra-Deep Wells in the No.1 Area of Shunbei Oil and Gas Field

  • 摘要: 针对顺北油气田一区三开钻遇的志留系地层承压能力低、井漏严重,固井一次性封固段长、漏失率高的问题,研究了长封固段防漏固井技术。从地质因素和工程因素2方面进行了原因分析,明确了技术需求。优选高抗挤空心玻璃微珠作为减轻剂,利用颗粒级配原理研制了低密度水泥浆。采用在隔离液中加入不同尺寸纤维的方式,提高地层承压能力;基于对极易漏层的准确判断,开发了适合超深井长封固段尾管固井的“正注反挤”防漏固井工艺。室内试验结果显示:在100 MPa液柱压力下低密度水泥浆的密度增幅小于0.03 kg/L,水泥石抗压强度高于15 MPa,具有良好的承压能力和较高的抗压强度;堵漏型隔离液可将地层承压能力提高1.5 MPa。“正注反挤”固井工艺与低密度水泥浆、堵漏型隔离液结合形成的顺北油气田一区超深井三开长封固段固井技术,在该区10多口井ϕ177.8 mm尾管固井中进行了应用,全部实现了水泥浆完全封固环空,没有漏封井段,较好地解决了固井漏失问题。研究与应用结果表明,顺北油气田一区超深井三开长封固段固井技术效果显著,可解决该区存在的固井难题。

     

    Abstract: With a goal of overcoming cementing challenges encountered in drilling the section below technical casing in the No.1 Area of the Shunbei Oil and Gas Field, an anti-leakage cementing technology for long-sealing section was studied. Problems to be overcome included low pressure-bearing capacity of Silurian strata, serious leakage, long sealing section of primary cementing and high leakage rate. Causes were analyzed from geological and engineering aspects, and technical requirements were clarified. High strength hollow glass microspheres were selected as the weight reducer, and a low-density cement slurry was developed based on particle grading principle. Fibers of different sizes in the isolation fluid were used to improve the pressure bearing capacity of formation. In addition, a“normal injection and reverse squeezing”anti-leakage cementing technique was developed to optimize the performance of the liner cementing of long sealing section in ultra-deep wells. The results of laboratory tests show that the density increase of low-density cement slurry was less than 0.03 kg/L under 100 MPa. The cement stone had a good pressure bearing capacity and compressivestrength, which was over 15 MPa. The pressure-bearing capacity of formation was increased by 1.5 MPa by using an anti-leakage spacer fluid. An anti-leakage cementing technique for the long sealing well section below the technical casing in the ultra-deep wells in the No.1 Area of the Shunbei Oil and Gas Field is formed by the combination of“normal injection and reverse squeezing”cementing process, low-density cement slurry, and plugging-type spacer fluid. This technology has been applied in the ϕ177.8 mm liner cementing jobs in more than 10 wells with annulus of those wells thoroughly sealed by cement slurry without leakage section, by which the cementing leakage problem was solved. The results of research and applications show that this technology has achieved a significant anti-leakage effect, and it can effectively solve the cementing problems in this area.

     

/

返回文章
返回