针对锥阀式和旋转阀信号发生器存在正脉冲信号频率较低、阀口分布空间受钻柱径向尺寸限制和供液能力不足等问题,设计了能快速产生连续波信号的往复阀。在介绍该往复阀的组成及连续波信号产生机理的基础上,建立了阀口形状曲线的数学计算模型,并研究了阀口形状与阀口排布对连续压力波产生特性的影响。模拟计算结果显示,设计的阀口(单排阀口数量4个、沿轴向阀口排数3排)产生的压力波与理想正弦压力波的相关系数达到了0.965 7,最大频率达到了10 Hz。研究结果表明,设计的往复阀阀口能够产生近似正弦波的连续压力波,并可以减小阀芯往复运动的位移、缩短往复运动周期,从而提高压力波信号产生的频率。
为了利用往复主阀产生钻井液连续波,从而实现井下信息高效、快速传递,研究了往复式钻井液连续波信号发生器的控制方法。在选择斜面凸轮作为控制机构的基础上,优选了普通无刷直流电动机并确定了改变电枢电压的调速方法,建立了往复主阀产生钻井液连续波时的电动机转速及负载转矩计算模型。经过算例分析,得到了能够产生正弦钻井液连续波的电动机转速、负载转矩和电枢电压随时间的变化规律:在半个周期内,电动机转速非线性减小,电动机负载转矩非线性增加,电动机最大负载转矩为0.46 N·m,电枢电压呈现先减小后增大的趋势。研究结果表明,改变电枢电压的调速方法是可行的,对连续波调频可以实现对井下信息的传输,提出的钻井液连续波信号发生器控制方法可以为井下信号发生装置的设计及现场应用提供参考。
为了准确分析高频电磁加热过程中影响稠油储层温度分布的因素,以电磁场和传热理论为基础,考虑稠油储层电导率、相对介电常数随频率变化,导热系数、比热容随温度变化的实际情况,建立了描述储层性质动态变化的数学模型,并采用多物理场模拟软件COMSOL求解数学模型,采用对比法分析了不同因素对温度分布的影响规律。计算分析发现:电磁波功率的提高有助于增大储层加热深度;较大的电磁波频率可引起波源附近储层温度升高,但温度随深度增大急剧下降;考虑储层性质动态变化时计算出的温度分布,与假设储层性质恒定时的计算结果存在差异;在一定变化范围内,储层温度值随相对介电常数和电导率增大而增大。研究结果表明,储层性质、电磁波功率和频率对储层的温度分布有明显影响,建立的考虑储层性质动态变化的数学模型为高频电磁加热稠油技术的现场应用提供了理论依据。
为了准确分析高频电磁加热过程中影响稠油储层温度分布的因素,以电磁场和传热理论为基础,考虑稠油储层电导率、相对介电常数随频率变化,导热系数、比热容随温度变化的实际情况,建立了描述储层性质动态变化的数学模型,并采用多物理场模拟软件COMSOL求解数学模型,采用对比法分析了不同因素对温度分布的影响规律。计算分析发现:电磁波功率的提高有助于增大储层加热深度;较大的电磁波频率可引起波源附近储层温度升高,但温度随深度增大急剧下降;考虑储层性质动态变化时计算出的温度分布,与假设储层性质恒定时的计算结果存在差异;在一定变化范围内,储层温度值随相对介电常数和电导率增大而增大。研究结果表明,储层性质、电磁波功率和频率对储层的温度分布有明显影响,建立的考虑储层性质动态变化的数学模型为高频电磁加热稠油技术的现场应用提供了理论依据。