在石油地质导向钻井和随钻测井中,通常利用随钻测井实时曲线进行砂泥岩剖面划分及油水层定性分析。由于随钻测井数据通过井下钻井液脉冲信号上传至地面,信号在传输信道中往往会受到一些干扰,因而造成地面接收到的实时随钻测井数据振荡,产生“毛刺”现象。另外,地层的地质构造及软硬程度不同会直接影响钻速,而钻速不同会影响地面接收到的随钻测井实时数据的采样密度,采样密度不同又会产生以下影响:1)在根据随钻测井实时数据绘制曲线时,数据采样点多的地方会出现“黑点”,数据采样点少的地方会出现“拉直线”现象,影响随钻测井实时解释;2)由于采样密度的不同,不同的随钻测井曲线之间、随钻测井曲线与内存随钻测井曲线之间以及实时随钻测井曲线与电缆测井曲线之间不能很好地进行相关对比分析。因此,随钻测井数据的实时处理,特别是曲线奇异点的检测与剔除、随钻测井网格化及采样间隔等间距化就显得尤为重要。
根据地面采集到的随钻测井实时数据建立数据重采样模型,需要满足以下条件[1]:1)重采样后曲线要过已知点,即已知数据要满足数据重采样模型;2)重采样后的曲线要保持原有曲线的变化趋势;3)重采样后的曲线形态要光滑,即曲线符合连续的一阶导数或二阶导数。
目前,常用的插值方法有牛顿、拉格朗日、埃尔米特等提出的全局多项式插值法及三次样条插值法[2, 3, 4, 5],其中以三次样条法最为常用。但这些方法容易出现形态摇摆现象或计算量较大,在随钻测井数据重采样中应用效果一般。此外,克里金、分形等方法[6, 7, 8]也可用于随钻测井数据插值,但由于其自动化程度低或步骤繁琐,不便于推广使用。鉴于此,笔者提出一种基于Akima插值的随钻测井数据实时处理方法,可以消除随钻测井高频振荡干扰造成的“毛刺”现象,提高实时随钻测井曲线信噪比,实现随钻测井实时数据网格化及采样间隔等间距化处理,满足随钻测井数据实时快速解释的需要。
1 Akima插值算法基本原理Akima插值算法即用Akima分段三次多项式计算。该算法是在每2个数据点间建立1条由三次多项式拟合而成的曲线,整条曲线保证一阶导数连续[9, 10, 11]。
给定n个不等间距样本点(xi,yi)(i=0,1,…,n-1),其中x0<x1<…<xn-1。若在子区间[xk,xk+1](k=0,1,2,…,n-2)上的2个端点处满足:

则在任意2个相邻子区间(xk,yk)和(xk+1,yk+1)间,可以确定唯一的三次多项式:


然后用式(2)就可以计算该子区间上各个插值点x(x∈[xk,xk+1])的函数近似值。
利用Akima提出的根据包括该点在内的相邻5个数据点,就可以确定插值公式的几何条件,中心点k处的导数为:


在端点处需满足:m-1=2m0-m1,m-2=2m-1-m0,mn-1=2mn-2-mn-3,mn=2mn-1-mn-2。
另外,当mk+1=mk,mk-1=mk-2时,;当mk+2=mk+1,mk=mk-1时,
。
利用上述方法可实现插值重采样。
2 基于Akima插值的随钻测井数据实时处理方法利用Akima插值方法进行随钻测井数据实时处理,主要包括2方面:1)薄层阈值法结合峰峰/谷谷比值法进行实时数据奇异点检测与剔除;2)建立随钻测井实时数据重采样模型,实现随钻测井实时数据网格化及采样间隔等间距化处理。
2.1 随钻测井实时数据奇异点检测与剔除随钻测井实时数据奇异点检测与剔除步骤如下:
1) 根据仪器的垂直分辨率确定地层的薄层阈值σ。
2) 根据所研究区块随钻测井地层响应特征,确定峰峰/谷谷比值范围[pmin,pmax]。
3) 利用导数极值法对获取的随钻测井实时数据求取极大值、极小值,确定随钻测井实时数据的波峰点和波谷点。
4) 逐次判断2个相邻波峰或波谷之间的距离Δs,并与地层薄层阈值进行比较:如果Δs<σ且该点为波峰,则计算该波峰与相邻波峰对应随钻测井数据的比值,如果该比值在区间[pmin,pmax]内,则继续下一个骤,否则该峰峰之间的数据点判为奇异点;如果Δs<σ且该点为波谷,则计算该波谷与相邻波谷对应随钻测井数据的比值,如果该比值在区间[pmin,pmax]内,则继续下一个步骤,否则该谷谷之间的数据点判为奇异点;如果Δs>σ,则继续下一个步骤。
5) 重复步骤4),直至判断完毕所有的波峰/波谷点。
6) 将上述步骤中判为奇异点的值剔除,该点的值采用五点汉明函数平滑法进行求取。
综上所述,综合分析薄层阈值与峰峰/谷谷比值,可实现随钻测井实时数据奇异点的检测与剔除。
2.2 随钻测井实时数据等间距处理设定时间间隔Δt,每隔Δt对获取的随钻测井数据进行等间距处理,其步骤如下:
1) 选取深度数据间隔δ,邻域半径为δ/2。
2) 对时间间隔Δt内的随钻测井数据进行网格化处理,分成n个均匀的网格区间。
3) 将深度值落在网格区域(i-1)δ±δ/2(i=1,2,3,…,n)内的数据点作为第i个网格的数据集合。
4) 判断第i个采样区间数据集合的大小,如果数据集合不为空则将该数据集合内的所有数据点的深度值及随钻测井数据分别进行算术平均,将深度算术平均值作为该采样区间的随钻测井数据采样点深度值dj(j=1,2,3,…,n1),将随钻测井数据的算术平均值作为该采样区间的采样点值xj(j=1,2,3,…,n1)。其中,n1为采样点个数。
5) 根据预设的等间距采样间隔σ对时间间隔Δt内的随钻测井深度进行数据重采样rk(k=1,2,3,…,n2),设各深度值对应的随钻测井数据为yk(k=1,2,3,…,n2)。其中,n2为重采样后的深度点总个数。
6) 利用重采样模型对每个重采样点进行随钻测井数据重构:首先,利用对半插入排序法确定重采样点的深度值rk(k=1,2,3,…,n2)落在采样区间哪2个采样点深度dj(j=1,2,3,…,n1)之间;然后,根据建立的重采样模型结合采样点值xj(j=1,2,3,…,n1)求取每个重采样点对应的随钻测井数值yk(k=1,2,3,…,n2)。
Akima插值方法与常规方法的具体实现过程如图1所示。
![]() |
图1 Akima插值方法及常规方法随钻测井实时数据等间距处理过程 Fig.1 Real-time LWD data equal interval processing with the Akima interpolation method and the conventional method |
从图1可以看出,2种方法的不同之处在于数据网格化后采样点处数据的表征方法及后续的处理方法,即:常规方法对于网格内没有数据的采样点选取邻近采样点的值,最后对所有采样点的数据按五点钟形函数平滑法处理;而Akima插值方法是利用重采样模型,对网格化后的每个数据重采样点进行随钻测井数据重构。
3 应用实例胜利油田某井位于东营凹陷坨-胜-永断裂带坨七断块,测量井段为1 285.512~1 719.064 m,采集的随钻测井数据包括随钻伽马和随钻电阻率数据。对整个测量井段内的数据进行分析发现:由于信号在传输信道中受到干扰,导致随钻测井数据存在“毛刺”现象;另外,钻速不同造成地面接收到的随钻测井实时数据的采样密度不同,在按随钻测井实时数据绘制曲线时,数据采样点多的地方会出现“黑点”,数据采样点少的地方会出现“拉直线”现象。图2为数据间隔分布直方图。
![]() |
图2 随钻测井实时数据间隔分布直方图 Fig.2 Interval histogram of real-time LWD data |
从图2可以看出,数据点的间隔主要集中在0.5 m以内。
采用上述基于Akima插值的奇异点检测与剔除方法进行数据预处理,结果见图3。由图3可知,利用薄层阈值法结合峰峰/谷谷比值法进行实时数据奇异点检测与剔除,可消除随钻测井高频振荡干扰造成的“毛刺”现象,提高实时随钻测井曲线信噪比。
![]() |
图3 随钻测井实时数据奇异值检测与剔除结果 Fig.3 Real-time LWD data singular value detection and elimination results |
在对随钻测井实时数据进行等间距处理过程中,Akima插值方法中设置δ=0.1 m,σ=0.5 m;常规方法中设置δ=0.1 m。
图4为Akima插值方法、常规方法处理结果与随钻测井原始数据三者之间的对比。由图4可知,常规方法的处理效果比Akima插值方法差一些,曲线不够光滑,在某些点出现“拉直线”现象。
![]() |
图4 Akima插值方法、常规方法处理结果与随钻测井原始数据对比 Fig.4 Comparison chart of LWD raw data points between the conventional method results and the Akima interpolation method |
常规方法、Akima插值方法处理结果与随钻测井实时数据、内存数据对比细节见图5和图6。
![]() |
图5 常规方法、Akima插值方法处理结果与随钻测井原始数据、内存数据对比1 Fig.5 Results comparison chart 1 of the detail of LWD real-time data points,memory data points,the conventional method and the Akima interpolation method |
![]() |
图6 常规方法、Akima插值方法处理结果与随钻测井实时数据、内存数据对比2 Fig.6 Results comparison chart 2 of the detail of LWD real-time data points,memory data points,the conventional method and the Akima interpolation method |
比较处理后的随钻实时数据与内存数据可知:Akima插值方法的最大相对误差为10.92%,比常规方法小6.06百分点;平均相对误差为8.73%,比常规方法小3.46百分点,相关系数为0.980 8,比常规方法大0.040 2。同时,从图5和图6也可以看出,在用Akima插值方法和常规方法对随钻测井曲线进行插值处理时,在一些细节(特别是在尖峰值的处理)上还是存在一定的差别,Akima插值方法最大程度地保证了实时数据的有效性,与内存数据更贴近,具有更好的相似性和一致性,很好地保留了随钻实时数据的尖峰值点。
4 结 论1) 采用薄层阈值法结合峰峰/谷谷比值法对数据奇异点进行检测与剔除,并采用数据网格化分析及Akima插值方法对数据进行重采样,解决了随钻测井实时数据采样密度不均匀造成的“黑点”及“拉直线”问题。
2) 将Akima插值方法应用于随钻测井实时数据处理,比较处理后的随钻实时数据与内存数据,发现该方法与常规方法相比,最大误差及平均误差小,相关系数大,说明应用该方法处理后的随钻测井实时数据与内存数据具有更好的相似性和一致性。
3) Akima插值方法能够满足不同随钻测井曲线之间、随钻测井实时曲线与内存随钻测井曲线之间、随钻测井实时曲线与电缆测井曲线之间相关的对比需求。
[1] |
杨旭.测井蓝图回放及曲线编辑技术研究与实现[D].青岛:中国石油大学(华东)计算机与通信工程学院,2011. Yang Xu.Realization and technology research about logging-blueprint protract and edit of curve[D].Qingdao:China University of Petroleum(Huadong),College of Computer and Communication Engineering,2011. |
[2] | Akima H.A new method of interpolation and smooth curve fitting based on local procedures[J].Journal of the ACM,1970,17(4):589-602. |
[3] |
文环明,庄庆德,马晓红.测井曲线的分数布朗插值[J].测井技术,2005,29(5):435-438. Wen Huanming,Zhuang Qingde,Ma Xiaohong.Fractal Brown movement interpolation of logging curves[J].Well Logging Technology,2005,29(5):435-438. |
[4] |
余继峰,于泳,付文钊,等.测井数据Matlab插值与地质旋回性分析应用[J].煤炭学报,2011,36(10):1679-1682. Yu Jifeng,Yu Yong,Fu Wenzhao,et al.Application of interpolation of well logs based on Matlab to analysis of geological cyclicity[J].Journal of China Coal Society,2011,36(10):1679-1682. |
[5] |
孔玉霞,廖明先,易娟子.插值法在测井数据处理中的应用:基于Excel的数据处理[J].石油仪器,2008,22(2):58-60. Kong Yuxia,Liao Mingxian,Yi Juanzi.Application of interpolating based on Excel to logging data processing[J].Petroleum Instruments,2008,22(2):58-60. |
[6] |
马海,杨锦舟,肖红兵,等.基于变异函数及支持向量机测井曲线插值方法[J].测井技术,2012,36(6):575-580. Ma Hai,Yang Jinzhou,Xiao Hongbing,et al.A log interpolation method based on support vector machine and a semivariogram model[J].Well Logging Technology,2012,36(6):575-580. |
[7] |
刘正锋,夏宏权.岩心分析数据插值方法研究[J].天然气工业,1998,18(4):32-34. Liu Zhengfeng,Xia Hongquan.A research on the interpolation of core analysis data[J].Natural Gas Industry,1998,18(4):32-34. |
[8] |
魏茂安,马海,陈潮,等.利用Kriging插值实现测井声波低频分量重构[J].石油钻探技术,2007,35(2):15-17. Wei Maoan,Ma Hai,Chen Chao,et al.The well log AC low frequency components reconstruction using Kriging interpolation[J].Petroleum Drilling Techniques,2007,35(2):15-17. |
[9] |
邵才瑞.井筒数据的Akima插值重采样方法[J].测井技术,2004,28(2):112-114. Shao Cairui.An Akima interpolation method for borehole data resampling[J].Well Logging Technology,2004,28(2):112-114. |
[10] |
来燕菁,张为民,齐党进,等.Akima曲线插补中的空间曲线多项式生成方法研究[J].制造技术与机床,2013,56(2):56-60. Lai Yanjing,Zhang Weimin,Qi Dangjin,et al.Research on generating space curve polynomials for Akima curve interpolation[J].Manufacturing Technology & Machine Tool,2013,56(2):56-60. |
[11] |
谢汝宽,王平,郭华,等.考虑航磁水平梯度变化的ΔT网格化方法研究[J].地球物理学报,2013,56(2):660-666. Xie Rukuan,Wang Ping,Guo Hua,et al.Aeromagnetic total field gridding enhancement with horizontal gradient[J].Chinese Journal of Geophysics,2013,56(2):660-666. |