郭建春,任文希,曾凡辉,等. 非常规油气井压裂参数智能优化研究进展与发展展望[J]. 石油钻探技术,2023, 51(5):1-7. DOI: 10.11911/syztjs.2023097
引用本文: 郭建春,任文希,曾凡辉,等. 非常规油气井压裂参数智能优化研究进展与发展展望[J]. 石油钻探技术,2023, 51(5):1-7. DOI: 10.11911/syztjs.2023097
GUO Jianchun, REN Wenxi, ZENG Fanhui, et al. Unconventional oil and gas well fracturing parameter intelligent optimization: research progress and future development prospects [J]. Petroleum Drilling Techniques,2023, 51(5):1-7. DOI: 10.11911/syztjs.2023097
Citation: GUO Jianchun, REN Wenxi, ZENG Fanhui, et al. Unconventional oil and gas well fracturing parameter intelligent optimization: research progress and future development prospects [J]. Petroleum Drilling Techniques,2023, 51(5):1-7. DOI: 10.11911/syztjs.2023097

非常规油气井压裂参数智能优化研究进展与发展展望

Unconventional Oil and Gas Well Fracturing Parameter Intelligent Optimization: Research Progress and Future Development Prospects

  • 摘要: 非常规油气储层具有非均质性强、低孔低渗的特征,非常规油气井需要进行压裂才能投产,与常规油气储层相比,其工程地质条件更为复杂,对传统压裂参数优化方法提出了挑战。人工智能可以为传统方法难以解决的问题提供解决方法,因此,被引入了非常规油气井压裂参数优化。为推动智能压裂理论和技术的快速发展,系统介绍了非常规油气井压裂参数智能优化研究进展情况,主要包括压裂参数优化目标的确定、压裂参数与压裂效果映射关系的建立、最优压裂参数组合的求解,提出非常规油气井压裂参数智能优化主要向基于光纤的井下压裂数据实时采集和传输、物理–数据协同的裂缝扩展–生产动态模拟、压裂参数智能优化及实时调控集成系统等3个方向发展。

     

    Abstract: Unconventional oil and gas reservoirs are characterized by strong heterogeneity, low porosity, and low permeability, and unconventional oil and gas wells need to be fractured to produce. Compared with conventional oil and gas reservoirs, unconventional oil and gas reservoirs have more complex engineering geology condition, which poses a challenge to the traditional fracturing parameter optimization methods. Artificial intelligence can provide solutions to problems that are difficult to solve with traditional methods, so artificial intelligence have been introduced into the optimization of fracturing parameters of unconventional oil and gas wells. In order to promote the rapid development of intelligent fracturing theory and technology, the research progress of intelligent optimization of fracturing parameters for unconventional oil and gas wells was systematically introduced, which mainly including the determination of the optimization objective of fracturing parameters, the establishment of the mapping relationship between fracturing parameters and fracturing effect, and the solution of the optimal fracturing parameter combination, etc. It was also proposed that the intelligent optimization of fracturing parameters for unconventional oil and gas wells should be mainly developed in three directions: real-time acquisition and transmission of downhole fracturing data based on optical fiber, physics-data synergy fracture propagation-production dynamic simulation, as well as intelligent optimization of fracturing parameters and real-time control integrated system.

     

/

返回文章
返回